/* ssysvxx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int ssysvxx_(char *fact, char *uplo, integer *n, integer *
nrhs, real *a, integer *lda, real *af, integer *ldaf, integer *ipiv,
char *equed, real *s, real *b, integer *ldb, real *x, integer *ldx,
real *rcond, real *rpvgrw, real *berr, integer *n_err_bnds__, real *
err_bnds_norm__, real *err_bnds_comp__, integer *nparams, real *
params, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
real r__1, r__2;
/* Local variables */
extern /* Subroutine */ int ssyrfsx_(char *, char *, integer *, integer *,
real *, integer *, real *, integer *, integer *, real *, real *,
integer *, real *, integer *, real *, real *, integer *, real *,
real *, integer *, real *, real *, integer *, integer *);
integer j;
real amax, smin, smax;
extern doublereal sla_syrpvgrw__(char *, integer *, integer *, real *,
integer *, real *, integer *, integer *, real *, ftnlen);
extern logical lsame_(char *, char *);
real scond;
logical equil, rcequ;
extern doublereal slamch_(char *);
logical nofact;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
integer infequ;
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *);
real smlnum;
extern /* Subroutine */ int slaqsy_(char *, integer *, real *, integer *,
real *, real *, real *, char *), ssytrf_(char *,
integer *, real *, integer *, integer *, real *, integer *,
integer *), slascl2_(integer *, integer *, real *, real *,
integer *), ssytrs_(char *, integer *, integer *, real *,
integer *, integer *, real *, integer *, integer *),
ssyequb_(char *, integer *, real *, integer *, real *, real *,
real *, real *, integer *);
/* -- LAPACK routine (version 3.2.1) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- April 2009 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSYSVXX uses the diagonal pivoting factorization to compute the */
/* solution to a real system of linear equations A * X = B, where A */
/* is an N-by-N symmetric matrix and X and B are N-by-NRHS matrices. */
/* If requested, both normwise and maximum componentwise error bounds */
/* are returned. SSYSVXX will return a solution with a tiny */
/* guaranteed error (O(eps) where eps is the working machine */
/* precision) unless the matrix is very ill-conditioned, in which */
/* case a warning is returned. Relevant condition numbers also are */
/* calculated and returned. */
/* SSYSVXX accepts user-provided factorizations and equilibration */
/* factors; see the definitions of the FACT and EQUED options. */
/* Solving with refinement and using a factorization from a previous */
/* SSYSVXX call will also produce a solution with either O(eps) */
/* errors or warnings, but we cannot make that claim for general */
/* user-provided factorizations and equilibration factors if they */
/* differ from what SSYSVXX would itself produce. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'E', real scaling factors are computed to equilibrate */
/* the system: */
/* diag(S)*A*diag(S) *inv(diag(S))*X = diag(S)*B */
/* Whether or not the system will be equilibrated depends on the */
/* scaling of the matrix A, but if equilibration is used, A is */
/* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
/* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
/* the matrix A (after equilibration if FACT = 'E') as */
/* A = U * D * U**T, if UPLO = 'U', or */
/* A = L * D * L**T, if UPLO = 'L', */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, and D is symmetric and block diagonal with */
/* 1-by-1 and 2-by-2 diagonal blocks. */
/* 3. If some D(i,i)=0, so that D is exactly singular, then the */
/* routine returns with INFO = i. Otherwise, the factored form of A */
/* is used to estimate the condition number of the matrix A (see */
/* argument RCOND). If the reciprocal of the condition number is */
/* less than machine precision, the routine still goes on to solve */
/* for X and compute error bounds as described below. */
/* 4. The system of equations is solved for X using the factored form */
/* of A. */
/* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
/* the routine will use iterative refinement to try to get a small */
/* error and error bounds. Refinement calculates the residual to at */
/* least twice the working precision. */
/* 6. If equilibration was used, the matrix X is premultiplied by */
/* diag(R) so that it solves the original system before */
/* equilibration. */
/* Arguments */
/* ========= */
/* Some optional parameters are bundled in the PARAMS array. These */
/* settings determine how refinement is performed, but often the */
/* defaults are acceptable. If the defaults are acceptable, users */
/* can pass NPARAMS = 0 which prevents the source code from accessing */
/* the PARAMS argument. */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of the matrix A is */
/* supplied on entry, and if not, whether the matrix A should be */
/* equilibrated before it is factored. */
/* = 'F': On entry, AF and IPIV contain the factored form of A. */
/* If EQUED is not 'N', the matrix A has been */
/* equilibrated with scaling factors given by S. */
/* A, AF, and IPIV are not modified. */
/* = 'N': The matrix A will be copied to AF and factored. */
/* = 'E': The matrix A will be equilibrated if necessary, then */
/* copied to AF and factored. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* The symmetric matrix A. If UPLO = 'U', the leading N-by-N */
/* upper triangular part of A contains the upper triangular */
/* part of the matrix A, and the strictly lower triangular */
/* part of A is not referenced. If UPLO = 'L', the leading */
/* N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/* diag(S)*A*diag(S). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input or output) REAL array, dimension (LDAF,N) */
/* If FACT = 'F', then AF is an input argument and on entry */
/* contains the block diagonal matrix D and the multipliers */
/* used to obtain the factor U or L from the factorization A = */
/* U*D*U**T or A = L*D*L**T as computed by SSYTRF. */
/* If FACT = 'N', then AF is an output argument and on exit */
/* returns the block diagonal matrix D and the multipliers */
/* used to obtain the factor U or L from the factorization A = */
/* U*D*U**T or A = L*D*L**T. */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* IPIV (input or output) INTEGER array, dimension (N) */
/* If FACT = 'F', then IPIV is an input argument and on entry */
/* contains details of the interchanges and the block */
/* structure of D, as determined by SSYTRF. If IPIV(k) > 0, */
/* then rows and columns k and IPIV(k) were interchanged and */
/* D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and */
/* IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and */
/* -IPIV(k) were interchanged and D(k-1:k,k-1:k) is a 2-by-2 */
/* diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, */
/* then rows and columns k+1 and -IPIV(k) were interchanged */
/* and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* If FACT = 'N', then IPIV is an output argument and on exit */
/* contains details of the interchanges and the block */
/* structure of D, as determined by SSYTRF. */
/* EQUED (input or output) CHARACTER*1 */
/* Specifies the form of equilibration that was done. */
/* = 'N': No equilibration (always true if FACT = 'N'). */
/* = 'Y': Both row and column equilibration, i.e., A has been */
/* replaced by diag(S) * A * diag(S). */
/* EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/* output argument. */
/* S (input or output) REAL array, dimension (N) */
/* The scale factors for A. If EQUED = 'Y', A is multiplied on */
/* the left and right by diag(S). S is an input argument if FACT = */
/* 'F'; otherwise, S is an output argument. If FACT = 'F' and EQUED */
/* = 'Y', each element of S must be positive. If S is output, each */
/* element of S is a power of the radix. If S is input, each element */
/* of S should be a power of the radix to ensure a reliable solution */
/* and error estimates. Scaling by powers of the radix does not cause */
/* rounding errors unless the result underflows or overflows. */
/* Rounding errors during scaling lead to refining with a matrix that */
/* is not equivalent to the input matrix, producing error estimates */
/* that may not be reliable. */
/* B (input/output) REAL array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, */
/* if EQUED = 'N', B is not modified; */
/* if EQUED = 'Y', B is overwritten by diag(S)*B; */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) REAL array, dimension (LDX,NRHS) */
/* If INFO = 0, the N-by-NRHS solution matrix X to the original */
/* system of equations. Note that A and B are modified on exit if */
/* EQUED .ne. 'N', and the solution to the equilibrated system is */
/* inv(diag(S))*X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) REAL */
/* Reciprocal scaled condition number. This is an estimate of the */
/* reciprocal Skeel condition number of the matrix A after */
/* equilibration (if done). If this is less than the machine */
/* precision (in particular, if it is zero), the matrix is singular */
/* to working precision. Note that the error may still be small even */
/* if this number is very small and the matrix appears ill- */
/* conditioned. */
/* RPVGRW (output) REAL */
/* Reciprocal pivot growth. On exit, this contains the reciprocal */
/* pivot growth factor norm(A)/norm(U). The "max absolute element" */
/* norm is used. If this is much less than 1, then the stability of */
/* the LU factorization of the (equilibrated) matrix A could be poor. */
/* This also means that the solution X, estimated condition numbers, */
/* and error bounds could be unreliable. If factorization fails with */
/* 0<INFO<=N, then this contains the reciprocal pivot growth factor */
/* for the leading INFO columns of A. */
/* BERR (output) REAL array, dimension (NRHS) */
/* Componentwise relative backward error. This is the */
/* componentwise relative backward error of each solution vector X(j) */
/* (i.e., the smallest relative change in any element of A or B that */
/* makes X(j) an exact solution). */
/* N_ERR_BNDS (input) INTEGER */
/* Number of error bounds to return for each right hand side */
/* and each type (normwise or componentwise). See ERR_BNDS_NORM and */
/* ERR_BNDS_COMP below. */
/* ERR_BNDS_NORM (output) REAL array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* normwise relative error, which is defined as follows: */
/* Normwise relative error in the ith solution vector: */
/* max_j (abs(XTRUE(j,i) - X(j,i))) */
/* ------------------------------ */
/* max_j abs(X(j,i)) */
/* The array is indexed by the type of error information as described */
/* below. There currently are up to three pieces of information */
/* returned. */
/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_NORM(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * slamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * slamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated normwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * slamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*A, where S scales each row by a power of the */
/* radix so all absolute row sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* ERR_BNDS_COMP (output) REAL array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* componentwise relative error, which is defined as follows: */
/* Componentwise relative error in the ith solution vector: */
/* abs(XTRUE(j,i) - X(j,i)) */
/* max_j ---------------------- */
/* abs(X(j,i)) */
/* The array is indexed by the right-hand side i (on which the */
/* componentwise relative error depends), and the type of error */
/* information as described below. There currently are up to three */
/* pieces of information returned for each right-hand side. If */
/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
/* the first (:,N_ERR_BNDS) entries are returned. */
/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_COMP(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * slamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * slamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated componentwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * slamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*(A*diag(x)), where x is the solution for the */
/* current right-hand side and S scales each row of */
/* A*diag(x) by a power of the radix so all absolute row */
/* sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* NPARAMS (input) INTEGER */
/* Specifies the number of parameters set in PARAMS. If .LE. 0, the */
/* PARAMS array is never referenced and default values are used. */
/* PARAMS (input / output) REAL array, dimension NPARAMS */
/* Specifies algorithm parameters. If an entry is .LT. 0.0, then */
/* that entry will be filled with default value used for that */
/* parameter. Only positions up to NPARAMS are accessed; defaults */
/* are used for higher-numbered parameters. */
/* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
/* refinement or not. */
/* Default: 1.0 */
/* = 0.0 : No refinement is performed, and no error bounds are */
/* computed. */
/* = 1.0 : Use the double-precision refinement algorithm, */
/* possibly with doubled-single computations if the */
/* compilation environment does not support DOUBLE */
/* PRECISION. */
/* (other values are reserved for future use) */
/* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
/* computations allowed for refinement. */
/* Default: 10 */
/* Aggressive: Set to 100 to permit convergence using approximate */
/* factorizations or factorizations other than LU. If */
/* the factorization uses a technique other than */
/* Gaussian elimination, the guarantees in */
/* err_bnds_norm and err_bnds_comp may no longer be */
/* trustworthy. */
/* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
/* will attempt to find a solution with small componentwise */
/* relative error in the double-precision algorithm. Positive */
/* is true, 0.0 is false. */
/* Default: 1.0 (attempt componentwise convergence) */
/* WORK (workspace) REAL array, dimension (4*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: Successful exit. The solution to every right-hand side is */
/* guaranteed. */
/* < 0: If INFO = -i, the i-th argument had an illegal value */
/* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly singular, so */
/* the solution and error bounds could not be computed. RCOND = 0 */
/* is returned. */
/* = N+J: The solution corresponding to the Jth right-hand side is */
/* not guaranteed. The solutions corresponding to other right- */
/* hand sides K with K > J may not be guaranteed as well, but */
/* only the first such right-hand side is reported. If a small */
/* componentwise error is not requested (PARAMS(3) = 0.0) then */
/* the Jth right-hand side is the first with a normwise error */
/* bound that is not guaranteed (the smallest J such */
/* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
/* the Jth right-hand side is the first with either a normwise or */
/* componentwise error bound that is not guaranteed (the smallest */
/* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
/* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
/* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
/* about all of the right-hand sides check ERR_BNDS_NORM or */
/* ERR_BNDS_COMP. */
/* ================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
err_bnds_comp_dim1 = *nrhs;
err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
err_bnds_comp__ -= err_bnds_comp_offset;
err_bnds_norm_dim1 = *nrhs;
err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
err_bnds_norm__ -= err_bnds_norm_offset;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--ipiv;
--s;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--berr;
--params;
--work;
--iwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
equil = lsame_(fact, "E");
smlnum = slamch_("Safe minimum");
bignum = 1.f / smlnum;
if (nofact || equil) {
*(unsigned char *)equed = 'N';
rcequ = FALSE_;
} else {
rcequ = lsame_(equed, "Y");
}
/* Default is failure. If an input parameter is wrong or */
/* factorization fails, make everything look horrible. Only the */
/* pivot growth is set here, the rest is initialized in SSYRFSX. */
*rpvgrw = 0.f;
/* Test the input parameters. PARAMS is not tested until SSYRFSX. */
if (! nofact && ! equil && ! lsame_(fact, "F")) {
*info = -1;
} else if (! lsame_(uplo, "U") && ! lsame_(uplo,
"L")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldaf < max(1,*n)) {
*info = -8;
} else if (lsame_(fact, "F") && ! (rcequ || lsame_(
equed, "N"))) {
*info = -9;
} else {
if (rcequ) {
smin = bignum;
smax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = smin, r__2 = s[j];
smin = dmin(r__1,r__2);
/* Computing MAX */
r__1 = smax, r__2 = s[j];
smax = dmax(r__1,r__2);
/* L10: */
}
if (smin <= 0.f) {
*info = -10;
} else if (*n > 0) {
scond = dmax(smin,smlnum) / dmin(smax,bignum);
} else {
scond = 1.f;
}
}
if (*info == 0) {
if (*ldb < max(1,*n)) {
*info = -12;
} else if (*ldx < max(1,*n)) {
*info = -14;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSYSVXX", &i__1);
return 0;
}
if (equil) {
/* Compute row and column scalings to equilibrate the matrix A. */
ssyequb_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, &work[1], &
infequ);
if (infequ == 0) {
/* Equilibrate the matrix. */
slaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
rcequ = lsame_(equed, "Y");
}
}
/* Scale the right-hand side. */
if (rcequ) {
slascl2_(n, nrhs, &s[1], &b[b_offset], ldb);
}
if (nofact || equil) {
/* Compute the LU factorization of A. */
slacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
i__1 = max(1,*n) * 5;
ssytrf_(uplo, n, &af[af_offset], ldaf, &ipiv[1], &work[1], &i__1,
info);
/* Return if INFO is non-zero. */
if (*info > 0) {
/* Pivot in column INFO is exactly 0 */
/* Compute the reciprocal pivot growth factor of the */
/* leading rank-deficient INFO columns of A. */
if (*n > 0) {
*rpvgrw = sla_syrpvgrw__(uplo, n, info, &a[a_offset], lda, &
af[af_offset], ldaf, &ipiv[1], &work[1], (ftnlen)1);
}
return 0;
}
}
/* Compute the reciprocal pivot growth factor RPVGRW. */
if (*n > 0) {
*rpvgrw = sla_syrpvgrw__(uplo, n, info, &a[a_offset], lda, &af[
af_offset], ldaf, &ipiv[1], &work[1], (ftnlen)1);
}
/* Compute the solution matrix X. */
slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
ssytrs_(uplo, n, nrhs, &af[af_offset], ldaf, &ipiv[1], &x[x_offset], ldx,
info);
/* Use iterative refinement to improve the computed solution and */
/* compute error bounds and backward error estimates for it. */
ssyrfsx_(uplo, equed, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &
ipiv[1], &s[1], &b[b_offset], ldb, &x[x_offset], ldx, rcond, &
berr[1], n_err_bnds__, &err_bnds_norm__[err_bnds_norm_offset], &
err_bnds_comp__[err_bnds_comp_offset], nparams, ¶ms[1], &work[
1], &iwork[1], info);
/* Scale solutions. */
if (rcequ) {
slascl2_(n, nrhs, &s[1], &x[x_offset], ldx);
}
return 0;
/* End of SSYSVXX */
} /* ssysvxx_ */