/* sstev.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sstev_(char *jobz, integer *n, real *d__, real *e, real *
z__, integer *ldz, real *work, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
real eps;
integer imax;
real rmin, rmax, tnrm, sigma;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
logical wantz;
integer iscale;
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
extern doublereal slanst_(char *, integer *, real *, real *);
extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
real smlnum;
extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
real *, integer *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSTEV computes all eigenvalues and, optionally, eigenvectors of a */
/* real symmetric tridiagonal matrix A. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) REAL array, dimension (N) */
/* On entry, the n diagonal elements of the tridiagonal matrix */
/* A. */
/* On exit, if INFO = 0, the eigenvalues in ascending order. */
/* E (input/output) REAL array, dimension (N-1) */
/* On entry, the (n-1) subdiagonal elements of the tridiagonal */
/* matrix A, stored in elements 1 to N-1 of E. */
/* On exit, the contents of E are destroyed. */
/* Z (output) REAL array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with D(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace) REAL array, dimension (max(1,2*N-2)) */
/* If JOBZ = 'N', WORK is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of E did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
wantz = lsame_(jobz, "V");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -6;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSTEV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (wantz) {
z__[z_dim1 + 1] = 1.f;
}
return 0;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
iscale = 0;
tnrm = slanst_("M", n, &d__[1], &e[1]);
if (tnrm > 0.f && tnrm < rmin) {
iscale = 1;
sigma = rmin / tnrm;
} else if (tnrm > rmax) {
iscale = 1;
sigma = rmax / tnrm;
}
if (iscale == 1) {
sscal_(n, &sigma, &d__[1], &c__1);
i__1 = *n - 1;
sscal_(&i__1, &sigma, &e[1], &c__1);
}
/* For eigenvalues only, call SSTERF. For eigenvalues and */
/* eigenvectors, call SSTEQR. */
if (! wantz) {
ssterf_(n, &d__[1], &e[1], info);
} else {
ssteqr_("I", n, &d__[1], &e[1], &z__[z_offset], ldz, &work[1], info);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
if (*info == 0) {
imax = *n;
} else {
imax = *info - 1;
}
r__1 = 1.f / sigma;
sscal_(&imax, &r__1, &d__[1], &c__1);
}
return 0;
/* End of SSTEV */
} /* sstev_ */