/* sspevd.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int sspevd_(char *jobz, char *uplo, integer *n, real *ap,
real *w, real *z__, integer *ldz, real *work, integer *lwork, integer
*iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
real eps;
integer inde;
real anrm, rmin, rmax, sigma;
extern logical lsame_(char *, char *);
integer iinfo;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
integer lwmin;
logical wantz;
integer iscale;
extern doublereal slamch_(char *);
real safmin;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
integer indtau;
extern /* Subroutine */ int sstedc_(char *, integer *, real *, real *,
real *, integer *, real *, integer *, integer *, integer *,
integer *);
integer indwrk, liwmin;
extern doublereal slansp_(char *, char *, integer *, real *, real *);
extern /* Subroutine */ int ssterf_(integer *, real *, real *, integer *);
integer llwork;
real smlnum;
extern /* Subroutine */ int ssptrd_(char *, integer *, real *, real *,
real *, real *, integer *);
logical lquery;
extern /* Subroutine */ int sopmtr_(char *, char *, char *, integer *,
integer *, real *, real *, real *, integer *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSPEVD computes all the eigenvalues and, optionally, eigenvectors */
/* of a real symmetric matrix A in packed storage. If eigenvectors are */
/* desired, it uses a divide and conquer algorithm. */
/* The divide and conquer algorithm makes very mild assumptions about */
/* floating point arithmetic. It will work on machines with a guard */
/* digit in add/subtract, or on those binary machines without guard */
/* digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
/* Cray-2. It could conceivably fail on hexadecimal or decimal machines */
/* without guard digits, but we know of none. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) REAL array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the symmetric matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, AP is overwritten by values generated during the */
/* reduction to tridiagonal form. If UPLO = 'U', the diagonal */
/* and first superdiagonal of the tridiagonal matrix T overwrite */
/* the corresponding elements of A, and if UPLO = 'L', the */
/* diagonal and first subdiagonal of T overwrite the */
/* corresponding elements of A. */
/* W (output) REAL array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) REAL array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal */
/* eigenvectors of the matrix A, with the i-th column of Z */
/* holding the eigenvector associated with W(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the required LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* If N <= 1, LWORK must be at least 1. */
/* If JOBZ = 'N' and N > 1, LWORK must be at least 2*N. */
/* If JOBZ = 'V' and N > 1, LWORK must be at least */
/* 1 + 6*N + N**2. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the required sizes of the WORK and IWORK */
/* arrays, returns these values as the first entries of the WORK */
/* and IWORK arrays, and no error message related to LWORK or */
/* LIWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (MAX(1,LIWORK)) */
/* On exit, if INFO = 0, IWORK(1) returns the required LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. */
/* If JOBZ = 'N' or N <= 1, LIWORK must be at least 1. */
/* If JOBZ = 'V' and N > 1, LIWORK must be at least 3 + 5*N. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the required sizes of the WORK and */
/* IWORK arrays, returns these values as the first entries of */
/* the WORK and IWORK arrays, and no error message related to */
/* LWORK or LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the algorithm failed to converge; i */
/* off-diagonal elements of an intermediate tridiagonal */
/* form did not converge to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--iwork;
/* Function Body */
wantz = lsame_(jobz, "V");
lquery = *lwork == -1 || *liwork == -1;
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (lsame_(uplo, "U") || lsame_(uplo,
"L"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -7;
}
if (*info == 0) {
if (*n <= 1) {
liwmin = 1;
lwmin = 1;
} else {
if (wantz) {
liwmin = *n * 5 + 3;
/* Computing 2nd power */
i__1 = *n;
lwmin = *n * 6 + 1 + i__1 * i__1;
} else {
liwmin = 1;
lwmin = *n << 1;
}
}
iwork[1] = liwmin;
work[1] = (real) lwmin;
if (*lwork < lwmin && ! lquery) {
*info = -9;
} else if (*liwork < liwmin && ! lquery) {
*info = -11;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSPEVD", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
w[1] = ap[1];
if (wantz) {
z__[z_dim1 + 1] = 1.f;
}
return 0;
}
/* Get machine constants. */
safmin = slamch_("Safe minimum");
eps = slamch_("Precision");
smlnum = safmin / eps;
bignum = 1.f / smlnum;
rmin = sqrt(smlnum);
rmax = sqrt(bignum);
/* Scale matrix to allowable range, if necessary. */
anrm = slansp_("M", uplo, n, &ap[1], &work[1]);
iscale = 0;
if (anrm > 0.f && anrm < rmin) {
iscale = 1;
sigma = rmin / anrm;
} else if (anrm > rmax) {
iscale = 1;
sigma = rmax / anrm;
}
if (iscale == 1) {
i__1 = *n * (*n + 1) / 2;
sscal_(&i__1, &sigma, &ap[1], &c__1);
}
/* Call SSPTRD to reduce symmetric packed matrix to tridiagonal form. */
inde = 1;
indtau = inde + *n;
ssptrd_(uplo, n, &ap[1], &w[1], &work[inde], &work[indtau], &iinfo);
/* For eigenvalues only, call SSTERF. For eigenvectors, first call */
/* SSTEDC to generate the eigenvector matrix, WORK(INDWRK), of the */
/* tridiagonal matrix, then call SOPMTR to multiply it by the */
/* Householder transformations represented in AP. */
if (! wantz) {
ssterf_(n, &w[1], &work[inde], info);
} else {
indwrk = indtau + *n;
llwork = *lwork - indwrk + 1;
sstedc_("I", n, &w[1], &work[inde], &z__[z_offset], ldz, &work[indwrk]
, &llwork, &iwork[1], liwork, info);
sopmtr_("L", uplo, "N", n, n, &ap[1], &work[indtau], &z__[z_offset],
ldz, &work[indwrk], &iinfo);
}
/* If matrix was scaled, then rescale eigenvalues appropriately. */
if (iscale == 1) {
r__1 = 1.f / sigma;
sscal_(n, &r__1, &w[1], &c__1);
}
work[1] = (real) lwmin;
iwork[1] = liwmin;
return 0;
/* End of SSPEVD */
} /* sspevd_ */