/* ssbgvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static real c_b25 = 1.f;
static real c_b27 = 0.f;
/* Subroutine */ int ssbgvx_(char *jobz, char *range, char *uplo, integer *n,
integer *ka, integer *kb, real *ab, integer *ldab, real *bb, integer *
ldbb, real *q, integer *ldq, real *vl, real *vu, integer *il, integer
*iu, real *abstol, integer *m, real *w, real *z__, integer *ldz, real
*work, integer *iwork, integer *ifail, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, bb_dim1, bb_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2;
/* Local variables */
integer i__, j, jj;
real tmp1;
integer indd, inde;
char vect[1];
logical test;
integer itmp1, indee;
extern logical lsame_(char *, char *);
integer iinfo;
char order[1];
extern /* Subroutine */ int sgemv_(char *, integer *, integer *, real *,
real *, integer *, real *, integer *, real *, real *, integer *);
logical upper;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *), sswap_(integer *, real *, integer *, real *, integer *
);
logical wantz, alleig, indeig;
integer indibl;
logical valeig;
extern /* Subroutine */ int xerbla_(char *, integer *);
integer indisp, indiwo;
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *);
integer indwrk;
extern /* Subroutine */ int spbstf_(char *, integer *, integer *, real *,
integer *, integer *), ssbtrd_(char *, char *, integer *,
integer *, real *, integer *, real *, real *, real *, integer *,
real *, integer *), ssbgst_(char *, char *,
integer *, integer *, integer *, real *, integer *, real *,
integer *, real *, integer *, real *, integer *),
sstein_(integer *, real *, real *, integer *, real *, integer *,
integer *, real *, integer *, real *, integer *, integer *,
integer *), ssterf_(integer *, real *, real *, integer *);
integer nsplit;
extern /* Subroutine */ int sstebz_(char *, char *, integer *, real *,
real *, integer *, integer *, real *, real *, real *, integer *,
integer *, real *, integer *, integer *, real *, integer *,
integer *), ssteqr_(char *, integer *, real *,
real *, real *, integer *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SSBGVX computes selected eigenvalues, and optionally, eigenvectors */
/* of a real generalized symmetric-definite banded eigenproblem, of */
/* the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric */
/* and banded, and B is also positive definite. Eigenvalues and */
/* eigenvectors can be selected by specifying either all eigenvalues, */
/* a range of values or a range of indices for the desired eigenvalues. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* RANGE (input) CHARACTER*1 */
/* = 'A': all eigenvalues will be found. */
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* will be found. */
/* = 'I': the IL-th through IU-th eigenvalues will be found. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangles of A and B are stored; */
/* = 'L': Lower triangles of A and B are stored. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* KA (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
/* KB (input) INTEGER */
/* The number of superdiagonals of the matrix B if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
/* AB (input/output) REAL array, dimension (LDAB, N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix A, stored in the first ka+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
/* On exit, the contents of AB are destroyed. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KA+1. */
/* BB (input/output) REAL array, dimension (LDBB, N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix B, stored in the first kb+1 rows of the array. The */
/* j-th column of B is stored in the j-th column of the array BB */
/* as follows: */
/* if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
/* On exit, the factor S from the split Cholesky factorization */
/* B = S**T*S, as returned by SPBSTF. */
/* LDBB (input) INTEGER */
/* The leading dimension of the array BB. LDBB >= KB+1. */
/* Q (output) REAL array, dimension (LDQ, N) */
/* If JOBZ = 'V', the n-by-n matrix used in the reduction of */
/* A*x = (lambda)*B*x to standard form, i.e. C*x = (lambda)*x, */
/* and consequently C to tridiagonal form. */
/* If JOBZ = 'N', the array Q is not referenced. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. If JOBZ = 'N', */
/* LDQ >= 1. If JOBZ = 'V', LDQ >= max(1,N). */
/* VL (input) REAL */
/* VU (input) REAL */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* ABSTOL (input) REAL */
/* The absolute error tolerance for the eigenvalues. */
/* An approximate eigenvalue is accepted as converged */
/* when it is determined to lie in an interval [a,b] */
/* of width less than or equal to */
/* ABSTOL + EPS * max( |a|,|b| ) , */
/* where EPS is the machine precision. If ABSTOL is less than */
/* or equal to zero, then EPS*|T| will be used in its place, */
/* where |T| is the 1-norm of the tridiagonal matrix obtained */
/* by reducing A to tridiagonal form. */
/* Eigenvalues will be computed most accurately when ABSTOL is */
/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/* If this routine returns with INFO>0, indicating that some */
/* eigenvectors did not converge, try setting ABSTOL to */
/* 2*SLAMCH('S'). */
/* M (output) INTEGER */
/* The total number of eigenvalues found. 0 <= M <= N. */
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* W (output) REAL array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) REAL array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/* eigenvectors, with the i-th column of Z holding the */
/* eigenvector associated with W(i). The eigenvectors are */
/* normalized so Z**T*B*Z = I. */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace/output) REAL array, dimension (7N) */
/* IWORK (workspace/output) INTEGER array, dimension (5N) */
/* IFAIL (output) INTEGER array, dimension (M) */
/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
/* indices of the eigenvalues that failed to converge. */
/* If JOBZ = 'N', then IFAIL is not referenced. */
/* INFO (output) INTEGER */
/* = 0 : successful exit */
/* < 0 : if INFO = -i, the i-th argument had an illegal value */
/* <= N: if INFO = i, then i eigenvectors failed to converge. */
/* Their indices are stored in IFAIL. */
/* > N : SPBSTF returned an error code; i.e., */
/* if INFO = N + i, for 1 <= i <= N, then the leading */
/* minor of order i of B is not positive definite. */
/* The factorization of B could not be completed and */
/* no eigenvalues or eigenvectors were computed. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
bb_dim1 = *ldbb;
bb_offset = 1 + bb_dim1;
bb -= bb_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--iwork;
--ifail;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (alleig || valeig || indeig)) {
*info = -2;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*ka < 0) {
*info = -5;
} else if (*kb < 0 || *kb > *ka) {
*info = -6;
} else if (*ldab < *ka + 1) {
*info = -8;
} else if (*ldbb < *kb + 1) {
*info = -10;
} else if (*ldq < 1 || wantz && *ldq < *n) {
*info = -12;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -14;
}
} else if (indeig) {
if (*il < 1 || *il > max(1,*n)) {
*info = -15;
} else if (*iu < min(*n,*il) || *iu > *n) {
*info = -16;
}
}
}
if (*info == 0) {
if (*ldz < 1 || wantz && *ldz < *n) {
*info = -21;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SSBGVX", &i__1);
return 0;
}
/* Quick return if possible */
*m = 0;
if (*n == 0) {
return 0;
}
/* Form a split Cholesky factorization of B. */
spbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem. */
ssbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
&q[q_offset], ldq, &work[1], &iinfo);
/* Reduce symmetric band matrix to tridiagonal form. */
indd = 1;
inde = indd + *n;
indwrk = inde + *n;
if (wantz) {
*(unsigned char *)vect = 'U';
} else {
*(unsigned char *)vect = 'N';
}
ssbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &work[indd], &work[inde],
&q[q_offset], ldq, &work[indwrk], &iinfo);
/* If all eigenvalues are desired and ABSTOL is less than or equal */
/* to zero, then call SSTERF or SSTEQR. If this fails for some */
/* eigenvalue, then try SSTEBZ. */
test = FALSE_;
if (indeig) {
if (*il == 1 && *iu == *n) {
test = TRUE_;
}
}
if ((alleig || test) && *abstol <= 0.f) {
scopy_(n, &work[indd], &c__1, &w[1], &c__1);
indee = indwrk + (*n << 1);
i__1 = *n - 1;
scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
if (! wantz) {
ssterf_(n, &w[1], &work[indee], info);
} else {
slacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
ssteqr_(jobz, n, &w[1], &work[indee], &z__[z_offset], ldz, &work[
indwrk], info);
if (*info == 0) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
ifail[i__] = 0;
/* L10: */
}
}
}
if (*info == 0) {
*m = *n;
goto L30;
}
*info = 0;
}
/* Otherwise, call SSTEBZ and, if eigenvectors are desired, */
/* call SSTEIN. */
if (wantz) {
*(unsigned char *)order = 'B';
} else {
*(unsigned char *)order = 'E';
}
indibl = 1;
indisp = indibl + *n;
indiwo = indisp + *n;
sstebz_(range, order, n, vl, vu, il, iu, abstol, &work[indd], &work[inde],
m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[indwrk],
&iwork[indiwo], info);
if (wantz) {
sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
indisp], &z__[z_offset], ldz, &work[indwrk], &iwork[indiwo], &
ifail[1], info);
/* Apply transformation matrix used in reduction to tridiagonal */
/* form to eigenvectors returned by SSTEIN. */
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
scopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
sgemv_("N", n, n, &c_b25, &q[q_offset], ldq, &work[1], &c__1, &
c_b27, &z__[j * z_dim1 + 1], &c__1);
/* L20: */
}
}
L30:
/* If eigenvalues are not in order, then sort them, along with */
/* eigenvectors. */
if (wantz) {
i__1 = *m - 1;
for (j = 1; j <= i__1; ++j) {
i__ = 0;
tmp1 = w[j];
i__2 = *m;
for (jj = j + 1; jj <= i__2; ++jj) {
if (w[jj] < tmp1) {
i__ = jj;
tmp1 = w[jj];
}
/* L40: */
}
if (i__ != 0) {
itmp1 = iwork[indibl + i__ - 1];
w[i__] = w[j];
iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
w[j] = tmp1;
iwork[indibl + j - 1] = itmp1;
sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
&c__1);
if (*info != 0) {
itmp1 = ifail[i__];
ifail[i__] = ifail[j];
ifail[j] = itmp1;
}
}
/* L50: */
}
}
return 0;
/* End of SSBGVX */
} /* ssbgvx_ */