/* sposvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int sposvx_(char *fact, char *uplo, integer *n, integer *
nrhs, real *a, integer *lda, real *af, integer *ldaf, char *equed,
real *s, real *b, integer *ldb, real *x, integer *ldx, real *rcond,
real *ferr, real *berr, real *work, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1,
x_offset, i__1, i__2;
real r__1, r__2;
/* Local variables */
integer i__, j;
real amax, smin, smax;
extern logical lsame_(char *, char *);
real scond, anorm;
logical equil, rcequ;
extern doublereal slamch_(char *);
logical nofact;
extern /* Subroutine */ int xerbla_(char *, integer *);
real bignum;
integer infequ;
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *), spocon_(char *, integer *,
real *, integer *, real *, real *, real *, integer *, integer *);
extern doublereal slansy_(char *, char *, integer *, real *, integer *,
real *);
real smlnum;
extern /* Subroutine */ int slaqsy_(char *, integer *, real *, integer *,
real *, real *, real *, char *), spoequ_(integer *
, real *, integer *, real *, real *, real *, integer *), sporfs_(
char *, integer *, integer *, real *, integer *, real *, integer *
, real *, integer *, real *, integer *, real *, real *, real *,
integer *, integer *), spotrf_(char *, integer *, real *,
integer *, integer *), spotrs_(char *, integer *, integer
*, real *, integer *, real *, integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SPOSVX uses the Cholesky factorization A = U**T*U or A = L*L**T to */
/* compute the solution to a real system of linear equations */
/* A * X = B, */
/* where A is an N-by-N symmetric positive definite matrix and X and B */
/* are N-by-NRHS matrices. */
/* Error bounds on the solution and a condition estimate are also */
/* provided. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'E', real scaling factors are computed to equilibrate */
/* the system: */
/* diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
/* Whether or not the system will be equilibrated depends on the */
/* scaling of the matrix A, but if equilibration is used, A is */
/* overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
/* 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
/* factor the matrix A (after equilibration if FACT = 'E') as */
/* A = U**T* U, if UPLO = 'U', or */
/* A = L * L**T, if UPLO = 'L', */
/* where U is an upper triangular matrix and L is a lower triangular */
/* matrix. */
/* 3. If the leading i-by-i principal minor is not positive definite, */
/* then the routine returns with INFO = i. Otherwise, the factored */
/* form of A is used to estimate the condition number of the matrix */
/* A. If the reciprocal of the condition number is less than machine */
/* precision, INFO = N+1 is returned as a warning, but the routine */
/* still goes on to solve for X and compute error bounds as */
/* described below. */
/* 4. The system of equations is solved for X using the factored form */
/* of A. */
/* 5. Iterative refinement is applied to improve the computed solution */
/* matrix and calculate error bounds and backward error estimates */
/* for it. */
/* 6. If equilibration was used, the matrix X is premultiplied by */
/* diag(S) so that it solves the original system before */
/* equilibration. */
/* Arguments */
/* ========= */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of the matrix A is */
/* supplied on entry, and if not, whether the matrix A should be */
/* equilibrated before it is factored. */
/* = 'F': On entry, AF contains the factored form of A. */
/* If EQUED = 'Y', the matrix A has been equilibrated */
/* with scaling factors given by S. A and AF will not */
/* be modified. */
/* = 'N': The matrix A will be copied to AF and factored. */
/* = 'E': The matrix A will be equilibrated if necessary, then */
/* copied to AF and factored. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the symmetric matrix A, except if FACT = 'F' and */
/* EQUED = 'Y', then A must contain the equilibrated matrix */
/* diag(S)*A*diag(S). If UPLO = 'U', the leading */
/* N-by-N upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. A is not modified if */
/* FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
/* On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
/* diag(S)*A*diag(S). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* AF (input or output) REAL array, dimension (LDAF,N) */
/* If FACT = 'F', then AF is an input argument and on entry */
/* contains the triangular factor U or L from the Cholesky */
/* factorization A = U**T*U or A = L*L**T, in the same storage */
/* format as A. If EQUED .ne. 'N', then AF is the factored form */
/* of the equilibrated matrix diag(S)*A*diag(S). */
/* If FACT = 'N', then AF is an output argument and on exit */
/* returns the triangular factor U or L from the Cholesky */
/* factorization A = U**T*U or A = L*L**T of the original */
/* matrix A. */
/* If FACT = 'E', then AF is an output argument and on exit */
/* returns the triangular factor U or L from the Cholesky */
/* factorization A = U**T*U or A = L*L**T of the equilibrated */
/* matrix A (see the description of A for the form of the */
/* equilibrated matrix). */
/* LDAF (input) INTEGER */
/* The leading dimension of the array AF. LDAF >= max(1,N). */
/* EQUED (input or output) CHARACTER*1 */
/* Specifies the form of equilibration that was done. */
/* = 'N': No equilibration (always true if FACT = 'N'). */
/* = 'Y': Equilibration was done, i.e., A has been replaced by */
/* diag(S) * A * diag(S). */
/* EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/* output argument. */
/* S (input or output) REAL array, dimension (N) */
/* The scale factors for A; not accessed if EQUED = 'N'. S is */
/* an input argument if FACT = 'F'; otherwise, S is an output */
/* argument. If FACT = 'F' and EQUED = 'Y', each element of S */
/* must be positive. */
/* B (input/output) REAL array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
/* B is overwritten by diag(S) * B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) REAL array, dimension (LDX,NRHS) */
/* If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
/* the original system of equations. Note that if EQUED = 'Y', */
/* A and B are modified on exit, and the solution to the */
/* equilibrated system is inv(diag(S))*X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) REAL */
/* The estimate of the reciprocal condition number of the matrix */
/* A after equilibration (if done). If RCOND is less than the */
/* machine precision (in particular, if RCOND = 0), the matrix */
/* is singular to working precision. This condition is */
/* indicated by a return code of INFO > 0. */
/* FERR (output) REAL array, dimension (NRHS) */
/* The estimated forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). The estimate is as reliable as */
/* the estimate for RCOND, and is almost always a slight */
/* overestimate of the true error. */
/* BERR (output) REAL array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in */
/* any element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) REAL array, dimension (3*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= N: the leading minor of order i of A is */
/* not positive definite, so the factorization */
/* could not be completed, and the solution has not */
/* been computed. RCOND = 0 is returned. */
/* = N+1: U is nonsingular, but RCOND is less than machine */
/* precision, meaning that the matrix is singular */
/* to working precision. Nevertheless, the */
/* solution and error bounds are computed because */
/* there are a number of situations where the */
/* computed solution can be more accurate than the */
/* value of RCOND would suggest. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
af_dim1 = *ldaf;
af_offset = 1 + af_dim1;
af -= af_offset;
--s;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
--iwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
equil = lsame_(fact, "E");
if (nofact || equil) {
*(unsigned char *)equed = 'N';
rcequ = FALSE_;
} else {
rcequ = lsame_(equed, "Y");
smlnum = slamch_("Safe minimum");
bignum = 1.f / smlnum;
}
/* Test the input parameters. */
if (! nofact && ! equil && ! lsame_(fact, "F")) {
*info = -1;
} else if (! lsame_(uplo, "U") && ! lsame_(uplo,
"L")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*lda < max(1,*n)) {
*info = -6;
} else if (*ldaf < max(1,*n)) {
*info = -8;
} else if (lsame_(fact, "F") && ! (rcequ || lsame_(
equed, "N"))) {
*info = -9;
} else {
if (rcequ) {
smin = bignum;
smax = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
r__1 = smin, r__2 = s[j];
smin = dmin(r__1,r__2);
/* Computing MAX */
r__1 = smax, r__2 = s[j];
smax = dmax(r__1,r__2);
/* L10: */
}
if (smin <= 0.f) {
*info = -10;
} else if (*n > 0) {
scond = dmax(smin,smlnum) / dmin(smax,bignum);
} else {
scond = 1.f;
}
}
if (*info == 0) {
if (*ldb < max(1,*n)) {
*info = -12;
} else if (*ldx < max(1,*n)) {
*info = -14;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SPOSVX", &i__1);
return 0;
}
if (equil) {
/* Compute row and column scalings to equilibrate the matrix A. */
spoequ_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);
if (infequ == 0) {
/* Equilibrate the matrix. */
slaqsy_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
rcequ = lsame_(equed, "Y");
}
}
/* Scale the right hand side. */
if (rcequ) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
b[i__ + j * b_dim1] = s[i__] * b[i__ + j * b_dim1];
/* L20: */
}
/* L30: */
}
}
if (nofact || equil) {
/* Compute the Cholesky factorization A = U'*U or A = L*L'. */
slacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
spotrf_(uplo, n, &af[af_offset], ldaf, info);
/* Return if INFO is non-zero. */
if (*info > 0) {
*rcond = 0.f;
return 0;
}
}
/* Compute the norm of the matrix A. */
anorm = slansy_("1", uplo, n, &a[a_offset], lda, &work[1]);
/* Compute the reciprocal of the condition number of A. */
spocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1],
info);
/* Compute the solution matrix X. */
slacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
spotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);
/* Use iterative refinement to improve the computed solution and */
/* compute error bounds and backward error estimates for it. */
sporfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &b[
b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &
iwork[1], info);
/* Transform the solution matrix X to a solution of the original */
/* system. */
if (rcequ) {
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 1; i__ <= i__2; ++i__) {
x[i__ + j * x_dim1] = s[i__] * x[i__ + j * x_dim1];
/* L40: */
}
/* L50: */
}
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
ferr[j] /= scond;
/* L60: */
}
}
/* Set INFO = N+1 if the matrix is singular to working precision. */
if (*rcond < slamch_("Epsilon")) {
*info = *n + 1;
}
return 0;
/* End of SPOSVX */
} /* sposvx_ */