/* spbtf2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static real c_b8 = -1.f;
static integer c__1 = 1;
/* Subroutine */ int spbtf2_(char *uplo, integer *n, integer *kd, real *ab,
integer *ldab, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3;
real r__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer j, kn;
real ajj;
integer kld;
extern /* Subroutine */ int ssyr_(char *, integer *, real *, real *,
integer *, real *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SPBTF2 computes the Cholesky factorization of a real symmetric */
/* positive definite band matrix A. */
/* The factorization has the form */
/* A = U' * U , if UPLO = 'U', or */
/* A = L * L', if UPLO = 'L', */
/* where U is an upper triangular matrix, U' is the transpose of U, and */
/* L is lower triangular. */
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored: */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* KD (input) INTEGER */
/* The number of super-diagonals of the matrix A if UPLO = 'U', */
/* or the number of sub-diagonals if UPLO = 'L'. KD >= 0. */
/* AB (input/output) REAL array, dimension (LDAB,N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix A, stored in the first KD+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* On exit, if INFO = 0, the triangular factor U or L from the */
/* Cholesky factorization A = U'*U or A = L*L' of the band */
/* matrix A, in the same storage format as A. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KD+1. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* > 0: if INFO = k, the leading minor of order k is not */
/* positive definite, and the factorization could not be */
/* completed. */
/* Further Details */
/* =============== */
/* The band storage scheme is illustrated by the following example, when */
/* N = 6, KD = 2, and UPLO = 'U': */
/* On entry: On exit: */
/* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
/* Similarly, if UPLO = 'L' the format of A is as follows: */
/* On entry: On exit: */
/* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
/* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
/* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
/* Array elements marked * are not used by the routine. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kd < 0) {
*info = -3;
} else if (*ldab < *kd + 1) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SPBTF2", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Computing MAX */
i__1 = 1, i__2 = *ldab - 1;
kld = max(i__1,i__2);
if (upper) {
/* Compute the Cholesky factorization A = U'*U. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute U(J,J) and test for non-positive-definiteness. */
ajj = ab[*kd + 1 + j * ab_dim1];
if (ajj <= 0.f) {
goto L30;
}
ajj = sqrt(ajj);
ab[*kd + 1 + j * ab_dim1] = ajj;
/* Compute elements J+1:J+KN of row J and update the */
/* trailing submatrix within the band. */
/* Computing MIN */
i__2 = *kd, i__3 = *n - j;
kn = min(i__2,i__3);
if (kn > 0) {
r__1 = 1.f / ajj;
sscal_(&kn, &r__1, &ab[*kd + (j + 1) * ab_dim1], &kld);
ssyr_("Upper", &kn, &c_b8, &ab[*kd + (j + 1) * ab_dim1], &kld,
&ab[*kd + 1 + (j + 1) * ab_dim1], &kld);
}
/* L10: */
}
} else {
/* Compute the Cholesky factorization A = L*L'. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Compute L(J,J) and test for non-positive-definiteness. */
ajj = ab[j * ab_dim1 + 1];
if (ajj <= 0.f) {
goto L30;
}
ajj = sqrt(ajj);
ab[j * ab_dim1 + 1] = ajj;
/* Compute elements J+1:J+KN of column J and update the */
/* trailing submatrix within the band. */
/* Computing MIN */
i__2 = *kd, i__3 = *n - j;
kn = min(i__2,i__3);
if (kn > 0) {
r__1 = 1.f / ajj;
sscal_(&kn, &r__1, &ab[j * ab_dim1 + 2], &c__1);
ssyr_("Lower", &kn, &c_b8, &ab[j * ab_dim1 + 2], &c__1, &ab[(
j + 1) * ab_dim1 + 1], &kld);
}
/* L20: */
}
}
return 0;
L30:
*info = j;
return 0;
/* End of SPBTF2 */
} /* spbtf2_ */