/* spbsv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int spbsv_(char *uplo, integer *n, integer *kd, integer *
nrhs, real *ab, integer *ldab, real *b, integer *ldb, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *), spbtrf_(
char *, integer *, integer *, real *, integer *, integer *), spbtrs_(char *, integer *, integer *, integer *, real *,
integer *, real *, integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SPBSV computes the solution to a real system of linear equations */
/* A * X = B, */
/* where A is an N-by-N symmetric positive definite band matrix and X */
/* and B are N-by-NRHS matrices. */
/* The Cholesky decomposition is used to factor A as */
/* A = U**T * U, if UPLO = 'U', or */
/* A = L * L**T, if UPLO = 'L', */
/* where U is an upper triangular band matrix, and L is a lower */
/* triangular band matrix, with the same number of superdiagonals or */
/* subdiagonals as A. The factored form of A is then used to solve the */
/* system of equations A * X = B. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* KD (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KD >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* AB (input/output) REAL array, dimension (LDAB,N) */
/* On entry, the upper or lower triangle of the symmetric band */
/* matrix A, stored in the first KD+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(KD+1+i-j,j) = A(i,j) for max(1,j-KD)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(N,j+KD). */
/* See below for further details. */
/* On exit, if INFO = 0, the triangular factor U or L from the */
/* Cholesky factorization A = U**T*U or A = L*L**T of the band */
/* matrix A, in the same storage format as A. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KD+1. */
/* B (input/output) REAL array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the leading minor of order i of A is not */
/* positive definite, so the factorization could not be */
/* completed, and the solution has not been computed. */
/* Further Details */
/* =============== */
/* The band storage scheme is illustrated by the following example, when */
/* N = 6, KD = 2, and UPLO = 'U': */
/* On entry: On exit: */
/* * * a13 a24 a35 a46 * * u13 u24 u35 u46 */
/* * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 */
/* a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 */
/* Similarly, if UPLO = 'L' the format of A is as follows: */
/* On entry: On exit: */
/* a11 a22 a33 a44 a55 a66 l11 l22 l33 l44 l55 l66 */
/* a21 a32 a43 a54 a65 * l21 l32 l43 l54 l65 * */
/* a31 a42 a53 a64 * * l31 l42 l53 l64 * * */
/* Array elements marked * are not used by the routine. */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*kd < 0) {
*info = -3;
} else if (*nrhs < 0) {
*info = -4;
} else if (*ldab < *kd + 1) {
*info = -6;
} else if (*ldb < max(1,*n)) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SPBSV ", &i__1);
return 0;
}
/* Compute the Cholesky factorization A = U'*U or A = L*L'. */
spbtrf_(uplo, n, kd, &ab[ab_offset], ldab, info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
spbtrs_(uplo, n, kd, nrhs, &ab[ab_offset], ldab, &b[b_offset], ldb,
info);
}
return 0;
/* End of SPBSV */
} /* spbsv_ */