/* slaqtr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static logical c_false = FALSE_;
static integer c__2 = 2;
static real c_b21 = 1.f;
static real c_b25 = 0.f;
static logical c_true = TRUE_;
/* Subroutine */ int slaqtr_(logical *ltran, logical *lreal, integer *n, real
*t, integer *ldt, real *b, real *w, real *scale, real *x, real *work,
integer *info)
{
/* System generated locals */
integer t_dim1, t_offset, i__1, i__2;
real r__1, r__2, r__3, r__4, r__5, r__6;
/* Local variables */
real d__[4] /* was [2][2] */;
integer i__, j, k;
real v[4] /* was [2][2] */, z__;
integer j1, j2, n1, n2;
real si, xj, sr, rec, eps, tjj, tmp;
integer ierr;
real smin;
extern doublereal sdot_(integer *, real *, integer *, real *, integer *);
real xmax;
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
integer jnext;
extern doublereal sasum_(integer *, real *, integer *);
real sminw, xnorm;
extern /* Subroutine */ int saxpy_(integer *, real *, real *, integer *,
real *, integer *), slaln2_(logical *, integer *, integer *, real
*, real *, real *, integer *, real *, real *, real *, integer *,
real *, real *, real *, integer *, real *, real *, integer *);
real scaloc;
extern doublereal slamch_(char *), slange_(char *, integer *,
integer *, real *, integer *, real *);
real bignum;
extern integer isamax_(integer *, real *, integer *);
extern /* Subroutine */ int sladiv_(real *, real *, real *, real *, real *
, real *);
logical notran;
real smlnum;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLAQTR solves the real quasi-triangular system */
/* op(T)*p = scale*c, if LREAL = .TRUE. */
/* or the complex quasi-triangular systems */
/* op(T + iB)*(p+iq) = scale*(c+id), if LREAL = .FALSE. */
/* in real arithmetic, where T is upper quasi-triangular. */
/* If LREAL = .FALSE., then the first diagonal block of T must be */
/* 1 by 1, B is the specially structured matrix */
/* B = [ b(1) b(2) ... b(n) ] */
/* [ w ] */
/* [ w ] */
/* [ . ] */
/* [ w ] */
/* op(A) = A or A', A' denotes the conjugate transpose of */
/* matrix A. */
/* On input, X = [ c ]. On output, X = [ p ]. */
/* [ d ] [ q ] */
/* This subroutine is designed for the condition number estimation */
/* in routine STRSNA. */
/* Arguments */
/* ========= */
/* LTRAN (input) LOGICAL */
/* On entry, LTRAN specifies the option of conjugate transpose: */
/* = .FALSE., op(T+i*B) = T+i*B, */
/* = .TRUE., op(T+i*B) = (T+i*B)'. */
/* LREAL (input) LOGICAL */
/* On entry, LREAL specifies the input matrix structure: */
/* = .FALSE., the input is complex */
/* = .TRUE., the input is real */
/* N (input) INTEGER */
/* On entry, N specifies the order of T+i*B. N >= 0. */
/* T (input) REAL array, dimension (LDT,N) */
/* On entry, T contains a matrix in Schur canonical form. */
/* If LREAL = .FALSE., then the first diagonal block of T must */
/* be 1 by 1. */
/* LDT (input) INTEGER */
/* The leading dimension of the matrix T. LDT >= max(1,N). */
/* B (input) REAL array, dimension (N) */
/* On entry, B contains the elements to form the matrix */
/* B as described above. */
/* If LREAL = .TRUE., B is not referenced. */
/* W (input) REAL */
/* On entry, W is the diagonal element of the matrix B. */
/* If LREAL = .TRUE., W is not referenced. */
/* SCALE (output) REAL */
/* On exit, SCALE is the scale factor. */
/* X (input/output) REAL array, dimension (2*N) */
/* On entry, X contains the right hand side of the system. */
/* On exit, X is overwritten by the solution. */
/* WORK (workspace) REAL array, dimension (N) */
/* INFO (output) INTEGER */
/* On exit, INFO is set to */
/* 0: successful exit. */
/* 1: the some diagonal 1 by 1 block has been perturbed by */
/* a small number SMIN to keep nonsingularity. */
/* 2: the some diagonal 2 by 2 block has been perturbed by */
/* a small number in SLALN2 to keep nonsingularity. */
/* NOTE: In the interests of speed, this routine does not */
/* check the inputs for errors. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Do not test the input parameters for errors */
/* Parameter adjustments */
t_dim1 = *ldt;
t_offset = 1 + t_dim1;
t -= t_offset;
--b;
--x;
--work;
/* Function Body */
notran = ! (*ltran);
*info = 0;
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Set constants to control overflow */
eps = slamch_("P");
smlnum = slamch_("S") / eps;
bignum = 1.f / smlnum;
xnorm = slange_("M", n, n, &t[t_offset], ldt, d__);
if (! (*lreal)) {
/* Computing MAX */
r__1 = xnorm, r__2 = dabs(*w), r__1 = max(r__1,r__2), r__2 = slange_(
"M", n, &c__1, &b[1], n, d__);
xnorm = dmax(r__1,r__2);
}
/* Computing MAX */
r__1 = smlnum, r__2 = eps * xnorm;
smin = dmax(r__1,r__2);
/* Compute 1-norm of each column of strictly upper triangular */
/* part of T to control overflow in triangular solver. */
work[1] = 0.f;
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
i__2 = j - 1;
work[j] = sasum_(&i__2, &t[j * t_dim1 + 1], &c__1);
/* L10: */
}
if (! (*lreal)) {
i__1 = *n;
for (i__ = 2; i__ <= i__1; ++i__) {
work[i__] += (r__1 = b[i__], dabs(r__1));
/* L20: */
}
}
n2 = *n << 1;
n1 = *n;
if (! (*lreal)) {
n1 = n2;
}
k = isamax_(&n1, &x[1], &c__1);
xmax = (r__1 = x[k], dabs(r__1));
*scale = 1.f;
if (xmax > bignum) {
*scale = bignum / xmax;
sscal_(&n1, scale, &x[1], &c__1);
xmax = bignum;
}
if (*lreal) {
if (notran) {
/* Solve T*p = scale*c */
jnext = *n;
for (j = *n; j >= 1; --j) {
if (j > jnext) {
goto L30;
}
j1 = j;
j2 = j;
jnext = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.f) {
j1 = j - 1;
jnext = j - 2;
}
}
if (j1 == j2) {
/* Meet 1 by 1 diagonal block */
/* Scale to avoid overflow when computing */
/* x(j) = b(j)/T(j,j) */
xj = (r__1 = x[j1], dabs(r__1));
tjj = (r__1 = t[j1 + j1 * t_dim1], dabs(r__1));
tmp = t[j1 + j1 * t_dim1];
if (tjj < smin) {
tmp = smin;
tjj = smin;
*info = 1;
}
if (xj == 0.f) {
goto L30;
}
if (tjj < 1.f) {
if (xj > bignum * tjj) {
rec = 1.f / xj;
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j1] /= tmp;
xj = (r__1 = x[j1], dabs(r__1));
/* Scale x if necessary to avoid overflow when adding a */
/* multiple of column j1 of T. */
if (xj > 1.f) {
rec = 1.f / xj;
if (work[j1] > (bignum - xmax) * rec) {
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
}
if (j1 > 1) {
i__1 = j1 - 1;
r__1 = -x[j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
k = isamax_(&i__1, &x[1], &c__1);
xmax = (r__1 = x[k], dabs(r__1));
}
} else {
/* Meet 2 by 2 diagonal block */
/* Call 2 by 2 linear system solve, to take */
/* care of possible overflow by scaling factor. */
d__[0] = x[j1];
d__[1] = x[j2];
slaln2_(&c_false, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, &c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.f) {
sscal_(n, &scaloc, &x[1], &c__1);
*scale *= scaloc;
}
x[j1] = v[0];
x[j2] = v[1];
/* Scale V(1,1) (= X(J1)) and/or V(2,1) (=X(J2)) */
/* to avoid overflow in updating right-hand side. */
/* Computing MAX */
r__1 = dabs(v[0]), r__2 = dabs(v[1]);
xj = dmax(r__1,r__2);
if (xj > 1.f) {
rec = 1.f / xj;
/* Computing MAX */
r__1 = work[j1], r__2 = work[j2];
if (dmax(r__1,r__2) > (bignum - xmax) * rec) {
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
}
}
/* Update right-hand side */
if (j1 > 1) {
i__1 = j1 - 1;
r__1 = -x[j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
r__1 = -x[j2];
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
k = isamax_(&i__1, &x[1], &c__1);
xmax = (r__1 = x[k], dabs(r__1));
}
}
L30:
;
}
} else {
/* Solve T'*p = scale*c */
jnext = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (j < jnext) {
goto L40;
}
j1 = j;
j2 = j;
jnext = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.f) {
j2 = j + 1;
jnext = j + 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block */
/* Scale if necessary to avoid overflow in forming the */
/* right-hand side element by inner product. */
xj = (r__1 = x[j1], dabs(r__1));
if (xmax > 1.f) {
rec = 1.f / xmax;
if (work[j1] > (bignum - xj) * rec) {
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
c__1);
xj = (r__1 = x[j1], dabs(r__1));
tjj = (r__1 = t[j1 + j1 * t_dim1], dabs(r__1));
tmp = t[j1 + j1 * t_dim1];
if (tjj < smin) {
tmp = smin;
tjj = smin;
*info = 1;
}
if (tjj < 1.f) {
if (xj > bignum * tjj) {
rec = 1.f / xj;
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
x[j1] /= tmp;
/* Computing MAX */
r__2 = xmax, r__3 = (r__1 = x[j1], dabs(r__1));
xmax = dmax(r__2,r__3);
} else {
/* 2 by 2 diagonal block */
/* Scale if necessary to avoid overflow in forming the */
/* right-hand side elements by inner product. */
/* Computing MAX */
r__3 = (r__1 = x[j1], dabs(r__1)), r__4 = (r__2 = x[j2],
dabs(r__2));
xj = dmax(r__3,r__4);
if (xmax > 1.f) {
rec = 1.f / xmax;
/* Computing MAX */
r__1 = work[j2], r__2 = work[j1];
if (dmax(r__1,r__2) > (bignum - xj) * rec) {
sscal_(n, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
&x[1], &c__1);
slaln2_(&c_true, &c__2, &c__1, &smin, &c_b21, &t[j1 + j1 *
t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &c_b25,
&c_b25, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.f) {
sscal_(n, &scaloc, &x[1], &c__1);
*scale *= scaloc;
}
x[j1] = v[0];
x[j2] = v[1];
/* Computing MAX */
r__3 = (r__1 = x[j1], dabs(r__1)), r__4 = (r__2 = x[j2],
dabs(r__2)), r__3 = max(r__3,r__4);
xmax = dmax(r__3,xmax);
}
L40:
;
}
}
} else {
/* Computing MAX */
r__1 = eps * dabs(*w);
sminw = dmax(r__1,smin);
if (notran) {
/* Solve (T + iB)*(p+iq) = c+id */
jnext = *n;
for (j = *n; j >= 1; --j) {
if (j > jnext) {
goto L70;
}
j1 = j;
j2 = j;
jnext = j - 1;
if (j > 1) {
if (t[j + (j - 1) * t_dim1] != 0.f) {
j1 = j - 1;
jnext = j - 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block */
/* Scale if necessary to avoid overflow in division */
z__ = *w;
if (j1 == 1) {
z__ = b[1];
}
xj = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[*n + j1],
dabs(r__2));
tjj = (r__1 = t[j1 + j1 * t_dim1], dabs(r__1)) + dabs(z__)
;
tmp = t[j1 + j1 * t_dim1];
if (tjj < sminw) {
tmp = sminw;
tjj = sminw;
*info = 1;
}
if (xj == 0.f) {
goto L70;
}
if (tjj < 1.f) {
if (xj > bignum * tjj) {
rec = 1.f / xj;
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
sladiv_(&x[j1], &x[*n + j1], &tmp, &z__, &sr, &si);
x[j1] = sr;
x[*n + j1] = si;
xj = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[*n + j1],
dabs(r__2));
/* Scale x if necessary to avoid overflow when adding a */
/* multiple of column j1 of T. */
if (xj > 1.f) {
rec = 1.f / xj;
if (work[j1] > (bignum - xmax) * rec) {
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
}
}
if (j1 > 1) {
i__1 = j1 - 1;
r__1 = -x[j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
r__1 = -x[*n + j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
x[1] += b[j1] * x[*n + j1];
x[*n + 1] -= b[j1] * x[j1];
xmax = 0.f;
i__1 = j1 - 1;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
r__3 = xmax, r__4 = (r__1 = x[k], dabs(r__1)) + (
r__2 = x[k + *n], dabs(r__2));
xmax = dmax(r__3,r__4);
/* L50: */
}
}
} else {
/* Meet 2 by 2 diagonal block */
d__[0] = x[j1];
d__[1] = x[j2];
d__[2] = x[*n + j1];
d__[3] = x[*n + j2];
r__1 = -(*w);
slaln2_(&c_false, &c__2, &c__2, &sminw, &c_b21, &t[j1 +
j1 * t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, &r__1, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.f) {
i__1 = *n << 1;
sscal_(&i__1, &scaloc, &x[1], &c__1);
*scale = scaloc * *scale;
}
x[j1] = v[0];
x[j2] = v[1];
x[*n + j1] = v[2];
x[*n + j2] = v[3];
/* Scale X(J1), .... to avoid overflow in */
/* updating right hand side. */
/* Computing MAX */
r__1 = dabs(v[0]) + dabs(v[2]), r__2 = dabs(v[1]) + dabs(
v[3]);
xj = dmax(r__1,r__2);
if (xj > 1.f) {
rec = 1.f / xj;
/* Computing MAX */
r__1 = work[j1], r__2 = work[j2];
if (dmax(r__1,r__2) > (bignum - xmax) * rec) {
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
}
}
/* Update the right-hand side. */
if (j1 > 1) {
i__1 = j1 - 1;
r__1 = -x[j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
r__1 = -x[j2];
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[1]
, &c__1);
i__1 = j1 - 1;
r__1 = -x[*n + j1];
saxpy_(&i__1, &r__1, &t[j1 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
i__1 = j1 - 1;
r__1 = -x[*n + j2];
saxpy_(&i__1, &r__1, &t[j2 * t_dim1 + 1], &c__1, &x[*
n + 1], &c__1);
x[1] = x[1] + b[j1] * x[*n + j1] + b[j2] * x[*n + j2];
x[*n + 1] = x[*n + 1] - b[j1] * x[j1] - b[j2] * x[j2];
xmax = 0.f;
i__1 = j1 - 1;
for (k = 1; k <= i__1; ++k) {
/* Computing MAX */
r__3 = (r__1 = x[k], dabs(r__1)) + (r__2 = x[k + *
n], dabs(r__2));
xmax = dmax(r__3,xmax);
/* L60: */
}
}
}
L70:
;
}
} else {
/* Solve (T + iB)'*(p+iq) = c+id */
jnext = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (j < jnext) {
goto L80;
}
j1 = j;
j2 = j;
jnext = j + 1;
if (j < *n) {
if (t[j + 1 + j * t_dim1] != 0.f) {
j2 = j + 1;
jnext = j + 2;
}
}
if (j1 == j2) {
/* 1 by 1 diagonal block */
/* Scale if necessary to avoid overflow in forming the */
/* right-hand side element by inner product. */
xj = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[j1 + *n],
dabs(r__2));
if (xmax > 1.f) {
rec = 1.f / xmax;
if (work[j1] > (bignum - xj) * rec) {
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
x[j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[1], &
c__1);
i__2 = j1 - 1;
x[*n + j1] -= sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1, &x[
*n + 1], &c__1);
if (j1 > 1) {
x[j1] -= b[j1] * x[*n + 1];
x[*n + j1] += b[j1] * x[1];
}
xj = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[j1 + *n],
dabs(r__2));
z__ = *w;
if (j1 == 1) {
z__ = b[1];
}
/* Scale if necessary to avoid overflow in */
/* complex division */
tjj = (r__1 = t[j1 + j1 * t_dim1], dabs(r__1)) + dabs(z__)
;
tmp = t[j1 + j1 * t_dim1];
if (tjj < sminw) {
tmp = sminw;
tjj = sminw;
*info = 1;
}
if (tjj < 1.f) {
if (xj > bignum * tjj) {
rec = 1.f / xj;
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
r__1 = -z__;
sladiv_(&x[j1], &x[*n + j1], &tmp, &r__1, &sr, &si);
x[j1] = sr;
x[j1 + *n] = si;
/* Computing MAX */
r__3 = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[j1 + *n],
dabs(r__2));
xmax = dmax(r__3,xmax);
} else {
/* 2 by 2 diagonal block */
/* Scale if necessary to avoid overflow in forming the */
/* right-hand side element by inner product. */
/* Computing MAX */
r__5 = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[*n + j1],
dabs(r__2)), r__6 = (r__3 = x[j2], dabs(r__3)) + (
r__4 = x[*n + j2], dabs(r__4));
xj = dmax(r__5,r__6);
if (xmax > 1.f) {
rec = 1.f / xmax;
/* Computing MAX */
r__1 = work[j1], r__2 = work[j2];
if (dmax(r__1,r__2) > (bignum - xj) / xmax) {
sscal_(&n2, &rec, &x[1], &c__1);
*scale *= rec;
xmax *= rec;
}
}
i__2 = j1 - 1;
d__[0] = x[j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[1] = x[j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &c__1,
&x[1], &c__1);
i__2 = j1 - 1;
d__[2] = x[*n + j1] - sdot_(&i__2, &t[j1 * t_dim1 + 1], &
c__1, &x[*n + 1], &c__1);
i__2 = j1 - 1;
d__[3] = x[*n + j2] - sdot_(&i__2, &t[j2 * t_dim1 + 1], &
c__1, &x[*n + 1], &c__1);
d__[0] -= b[j1] * x[*n + 1];
d__[1] -= b[j2] * x[*n + 1];
d__[2] += b[j1] * x[1];
d__[3] += b[j2] * x[1];
slaln2_(&c_true, &c__2, &c__2, &sminw, &c_b21, &t[j1 + j1
* t_dim1], ldt, &c_b21, &c_b21, d__, &c__2, &
c_b25, w, v, &c__2, &scaloc, &xnorm, &ierr);
if (ierr != 0) {
*info = 2;
}
if (scaloc != 1.f) {
sscal_(&n2, &scaloc, &x[1], &c__1);
*scale = scaloc * *scale;
}
x[j1] = v[0];
x[j2] = v[1];
x[*n + j1] = v[2];
x[*n + j2] = v[3];
/* Computing MAX */
r__5 = (r__1 = x[j1], dabs(r__1)) + (r__2 = x[*n + j1],
dabs(r__2)), r__6 = (r__3 = x[j2], dabs(r__3)) + (
r__4 = x[*n + j2], dabs(r__4)), r__5 = max(r__5,
r__6);
xmax = dmax(r__5,xmax);
}
L80:
;
}
}
}
return 0;
/* End of SLAQTR */
} /* slaqtr_ */