aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/slanst.c
blob: dd240cad48257d4f46fd7c39a0f468e19b00bb8f (plain) (tree)




































































































































































                                                                               
/* slanst.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

doublereal slanst_(char *norm, integer *n, real *d__, real *e)
{
    /* System generated locals */
    integer i__1;
    real ret_val, r__1, r__2, r__3, r__4, r__5;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__;
    real sum, scale;
    extern logical lsame_(char *, char *);
    real anorm;
    extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *, 
	    real *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SLANST  returns the value of the one norm,  or the Frobenius norm, or */
/*  the  infinity norm,  or the  element of  largest absolute value  of a */
/*  real symmetric tridiagonal matrix A. */

/*  Description */
/*  =========== */

/*  SLANST returns the value */

/*     SLANST = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/*              ( */
/*              ( norm1(A),         NORM = '1', 'O' or 'o' */
/*              ( */
/*              ( normI(A),         NORM = 'I' or 'i' */
/*              ( */
/*              ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */

/*  where  norm1  denotes the  one norm of a matrix (maximum column sum), */
/*  normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
/*  normF  denotes the  Frobenius norm of a matrix (square root of sum of */
/*  squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm. */

/*  Arguments */
/*  ========= */

/*  NORM    (input) CHARACTER*1 */
/*          Specifies the value to be returned in SLANST as described */
/*          above. */

/*  N       (input) INTEGER */
/*          The order of the matrix A.  N >= 0.  When N = 0, SLANST is */
/*          set to zero. */

/*  D       (input) REAL array, dimension (N) */
/*          The diagonal elements of A. */

/*  E       (input) REAL array, dimension (N-1) */
/*          The (n-1) sub-diagonal or super-diagonal elements of A. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    --e;
    --d__;

    /* Function Body */
    if (*n <= 0) {
	anorm = 0.f;
    } else if (lsame_(norm, "M")) {

/*        Find max(abs(A(i,j))). */

	anorm = (r__1 = d__[*n], dabs(r__1));
	i__1 = *n - 1;
	for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
	    r__2 = anorm, r__3 = (r__1 = d__[i__], dabs(r__1));
	    anorm = dmax(r__2,r__3);
/* Computing MAX */
	    r__2 = anorm, r__3 = (r__1 = e[i__], dabs(r__1));
	    anorm = dmax(r__2,r__3);
/* L10: */
	}
    } else if (lsame_(norm, "O") || *(unsigned char *)
	    norm == '1' || lsame_(norm, "I")) {

/*        Find norm1(A). */

	if (*n == 1) {
	    anorm = dabs(d__[1]);
	} else {
/* Computing MAX */
	    r__3 = dabs(d__[1]) + dabs(e[1]), r__4 = (r__1 = e[*n - 1], dabs(
		    r__1)) + (r__2 = d__[*n], dabs(r__2));
	    anorm = dmax(r__3,r__4);
	    i__1 = *n - 1;
	    for (i__ = 2; i__ <= i__1; ++i__) {
/* Computing MAX */
		r__4 = anorm, r__5 = (r__1 = d__[i__], dabs(r__1)) + (r__2 = 
			e[i__], dabs(r__2)) + (r__3 = e[i__ - 1], dabs(r__3));
		anorm = dmax(r__4,r__5);
/* L20: */
	    }
	}
    } else if (lsame_(norm, "F") || lsame_(norm, "E")) {

/*        Find normF(A). */

	scale = 0.f;
	sum = 1.f;
	if (*n > 1) {
	    i__1 = *n - 1;
	    slassq_(&i__1, &e[1], &c__1, &scale, &sum);
	    sum *= 2;
	}
	slassq_(n, &d__[1], &c__1, &scale, &sum);
	anorm = scale * sqrt(sum);
    }

    ret_val = anorm;
    return ret_val;

/*     End of SLANST */

} /* slanst_ */