/* slansf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal slansf_(char *norm, char *transr, char *uplo, integer *n, real *a,
real *work)
{
/* System generated locals */
integer i__1, i__2;
real ret_val, r__1, r__2, r__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, k, l;
real s;
integer n1;
real aa;
integer lda, ifm, noe, ilu;
real scale;
extern logical lsame_(char *, char *);
real value;
extern integer isamax_(integer *, real *, integer *);
extern /* Subroutine */ int slassq_(integer *, real *, integer *, real *,
real *);
/* -- LAPACK routine (version 3.2) -- */
/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
/* -- November 2008 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SLANSF returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of a */
/* real symmetric matrix A in RFP format. */
/* Description */
/* =========== */
/* SLANSF returns the value */
/* SLANSF = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER */
/* Specifies the value to be returned in SLANSF as described */
/* above. */
/* TRANSR (input) CHARACTER */
/* Specifies whether the RFP format of A is normal or */
/* transposed format. */
/* = 'N': RFP format is Normal; */
/* = 'T': RFP format is Transpose. */
/* UPLO (input) CHARACTER */
/* On entry, UPLO specifies whether the RFP matrix A came from */
/* an upper or lower triangular matrix as follows: */
/* = 'U': RFP A came from an upper triangular matrix; */
/* = 'L': RFP A came from a lower triangular matrix. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. When N = 0, SLANSF is */
/* set to zero. */
/* A (input) REAL array, dimension ( N*(N+1)/2 ); */
/* On entry, the upper (if UPLO = 'U') or lower (if UPLO = 'L') */
/* part of the symmetric matrix A stored in RFP format. See the */
/* "Notes" below for more details. */
/* Unchanged on exit. */
/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */
/* where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
/* WORK is not referenced. */
/* Notes */
/* ===== */
/* We first consider Rectangular Full Packed (RFP) Format when N is */
/* even. We give an example where N = 6. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 05 00 */
/* 11 12 13 14 15 10 11 */
/* 22 23 24 25 20 21 22 */
/* 33 34 35 30 31 32 33 */
/* 44 45 40 41 42 43 44 */
/* 55 50 51 52 53 54 55 */
/* Let TRANSR = 'N'. RFP holds AP as follows: */
/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/* the transpose of the first three columns of AP upper. */
/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/* the transpose of the last three columns of AP lower. */
/* This covers the case N even and TRANSR = 'N'. */
/* RFP A RFP A */
/* 03 04 05 33 43 53 */
/* 13 14 15 00 44 54 */
/* 23 24 25 10 11 55 */
/* 33 34 35 20 21 22 */
/* 00 44 45 30 31 32 */
/* 01 11 55 40 41 42 */
/* 02 12 22 50 51 52 */
/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
/* We first consider Rectangular Full Packed (RFP) Format when N is */
/* odd. We give an example where N = 5. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 00 */
/* 11 12 13 14 10 11 */
/* 22 23 24 20 21 22 */
/* 33 34 30 31 32 33 */
/* 44 40 41 42 43 44 */
/* Let TRANSR = 'N'. RFP holds AP as follows: */
/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/* the transpose of the first two columns of AP upper. */
/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/* the transpose of the last two columns of AP lower. */
/* This covers the case N odd and TRANSR = 'N'. */
/* RFP A RFP A */
/* 02 03 04 00 33 43 */
/* 12 13 14 10 11 44 */
/* 22 23 24 20 21 22 */
/* 00 33 34 30 31 32 */
/* 01 11 44 40 41 42 */
/* Now let TRANSR = 'T'. RFP A in both UPLO cases is just the */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* 02 12 22 00 01 00 10 20 30 40 50 */
/* 03 13 23 33 11 33 11 21 31 41 51 */
/* 04 14 24 34 44 43 44 22 32 42 52 */
/* Reference */
/* ========= */
/* ===================================================================== */
/* .. */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
if (*n == 0) {
ret_val = 0.f;
return ret_val;
}
/* set noe = 1 if n is odd. if n is even set noe=0 */
noe = 1;
if (*n % 2 == 0) {
noe = 0;
}
/* set ifm = 0 when form='T or 't' and 1 otherwise */
ifm = 1;
if (lsame_(transr, "T")) {
ifm = 0;
}
/* set ilu = 0 when uplo='U or 'u' and 1 otherwise */
ilu = 1;
if (lsame_(uplo, "U")) {
ilu = 0;
}
/* set lda = (n+1)/2 when ifm = 0 */
/* set lda = n when ifm = 1 and noe = 1 */
/* set lda = n+1 when ifm = 1 and noe = 0 */
if (ifm == 1) {
if (noe == 1) {
lda = *n;
} else {
/* noe=0 */
lda = *n + 1;
}
} else {
/* ifm=0 */
lda = (*n + 1) / 2;
}
if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
k = (*n + 1) / 2;
value = 0.f;
if (noe == 1) {
/* n is odd */
if (ifm == 1) {
/* A is n by k */
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = value, r__3 = (r__1 = a[i__ + j * lda], dabs(
r__1));
value = dmax(r__2,r__3);
}
}
} else {
/* xpose case; A is k by n */
i__1 = *n - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = value, r__3 = (r__1 = a[i__ + j * lda], dabs(
r__1));
value = dmax(r__2,r__3);
}
}
}
} else {
/* n is even */
if (ifm == 1) {
/* A is n+1 by k */
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n;
for (i__ = 0; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = value, r__3 = (r__1 = a[i__ + j * lda], dabs(
r__1));
value = dmax(r__2,r__3);
}
}
} else {
/* xpose case; A is k by n+1 */
i__1 = *n;
for (j = 0; j <= i__1; ++j) {
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
/* Computing MAX */
r__2 = value, r__3 = (r__1 = a[i__ + j * lda], dabs(
r__1));
value = dmax(r__2,r__3);
}
}
}
}
} else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
/* Find normI(A) ( = norm1(A), since A is symmetric). */
if (ifm == 1) {
k = *n / 2;
if (noe == 1) {
/* n is odd */
if (ilu == 0) {
i__1 = k - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
i__1 = k;
for (j = 0; j <= i__1; ++j) {
s = 0.f;
i__2 = k + j - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(i,j+k) */
s += aa;
work[i__] += aa;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,j+k) */
work[j + k] = s + aa;
if (i__ == k + k) {
goto L10;
}
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j,j) */
work[j] += aa;
s = 0.f;
i__2 = k - 1;
for (l = j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(l,j) */
s += aa;
work[l] += aa;
}
work[j] += s;
}
L10:
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
} else {
/* ilu = 1 */
++k;
/* k=(n+1)/2 for n odd and ilu=1 */
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
for (j = k - 1; j >= 0; --j) {
s = 0.f;
i__1 = j - 2;
for (i__ = 0; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,i+k) */
s += aa;
work[i__ + k] += aa;
}
if (j > 0) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,j+k) */
s += aa;
work[i__ + k] += s;
/* i=j */
++i__;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j,j) */
work[j] = aa;
s = 0.f;
i__1 = *n - 1;
for (l = j + 1; l <= i__1; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(l,j) */
s += aa;
work[l] += aa;
}
work[j] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
}
} else {
/* n is even */
if (ilu == 0) {
i__1 = k - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
s = 0.f;
i__2 = k + j - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(i,j+k) */
s += aa;
work[i__] += aa;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,j+k) */
work[j + k] = s + aa;
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j,j) */
work[j] += aa;
s = 0.f;
i__2 = k - 1;
for (l = j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(l,j) */
s += aa;
work[l] += aa;
}
work[j] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
} else {
/* ilu = 1 */
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
for (j = k - 1; j >= 0; --j) {
s = 0.f;
i__1 = j - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,i+k) */
s += aa;
work[i__ + k] += aa;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j+k,j+k) */
s += aa;
work[i__ + k] += s;
/* i=j */
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(j,j) */
work[j] = aa;
s = 0.f;
i__1 = *n - 1;
for (l = j + 1; l <= i__1; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* -> A(l,j) */
s += aa;
work[l] += aa;
}
work[j] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
}
}
} else {
/* ifm=0 */
k = *n / 2;
if (noe == 1) {
/* n is odd */
if (ilu == 0) {
n1 = k;
/* n/2 */
++k;
/* k is the row size and lda */
i__1 = *n - 1;
for (i__ = n1; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
i__1 = n1 - 1;
for (j = 0; j <= i__1; ++j) {
s = 0.f;
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,n1+i) */
work[i__ + n1] += aa;
s += aa;
}
work[j] = s;
}
/* j=n1=k-1 is special */
s = (r__1 = a[j * lda], dabs(r__1));
/* A(k-1,k-1) */
i__1 = k - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k-1,i+n1) */
work[i__ + n1] += aa;
s += aa;
}
work[j] += s;
i__1 = *n - 1;
for (j = k; j <= i__1; ++j) {
s = 0.f;
i__2 = j - k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(i,j-k) */
work[i__] += aa;
s += aa;
}
/* i=j-k */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j-k,j-k) */
s += aa;
work[j - k] += s;
++i__;
s = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,j) */
i__2 = *n - 1;
for (l = j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,l) */
work[l] += aa;
s += aa;
}
work[j] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
} else {
/* ilu=1 */
++k;
/* k=(n+1)/2 for n odd and ilu=1 */
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
/* process */
s = 0.f;
i__2 = j - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,i) */
work[i__] += aa;
s += aa;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* i=j so process of A(j,j) */
s += aa;
work[j] = s;
/* is initialised here */
++i__;
/* i=j process A(j+k,j+k) */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
s = aa;
i__2 = *n - 1;
for (l = k + j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(l,k+j) */
s += aa;
work[l] += aa;
}
work[k + j] += s;
}
/* j=k-1 is special :process col A(k-1,0:k-1) */
s = 0.f;
i__1 = k - 2;
for (i__ = 0; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k,i) */
work[i__] += aa;
s += aa;
}
/* i=k-1 */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k-1,k-1) */
s += aa;
work[i__] = s;
/* done with col j=k+1 */
i__1 = *n - 1;
for (j = k; j <= i__1; ++j) {
/* process col j of A = A(j,0:k-1) */
s = 0.f;
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,i) */
work[i__] += aa;
s += aa;
}
work[j] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
}
} else {
/* n is even */
if (ilu == 0) {
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
s = 0.f;
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,i+k) */
work[i__ + k] += aa;
s += aa;
}
work[j] = s;
}
/* j=k */
aa = (r__1 = a[j * lda], dabs(r__1));
/* A(k,k) */
s = aa;
i__1 = k - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k,k+i) */
work[i__ + k] += aa;
s += aa;
}
work[j] += s;
i__1 = *n - 1;
for (j = k + 1; j <= i__1; ++j) {
s = 0.f;
i__2 = j - 2 - k;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(i,j-k-1) */
work[i__] += aa;
s += aa;
}
/* i=j-1-k */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j-k-1,j-k-1) */
s += aa;
work[j - k - 1] += s;
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,j) */
s = aa;
i__2 = *n - 1;
for (l = j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j,l) */
work[l] += aa;
s += aa;
}
work[j] += s;
}
/* j=n */
s = 0.f;
i__1 = k - 2;
for (i__ = 0; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(i,k-1) */
work[i__] += aa;
s += aa;
}
/* i=k-1 */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k-1,k-1) */
s += aa;
work[i__] += s;
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
} else {
/* ilu=1 */
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
work[i__] = 0.f;
}
/* j=0 is special :process col A(k:n-1,k) */
s = dabs(a[0]);
/* A(k,k) */
i__1 = k - 1;
for (i__ = 1; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__], dabs(r__1));
/* A(k+i,k) */
work[i__ + k] += aa;
s += aa;
}
work[k] += s;
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
/* process */
s = 0.f;
i__2 = j - 2;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j-1,i) */
work[i__] += aa;
s += aa;
}
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* i=j-1 so process of A(j-1,j-1) */
s += aa;
work[j - 1] = s;
/* is initialised here */
++i__;
/* i=j process A(j+k,j+k) */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
s = aa;
i__2 = *n - 1;
for (l = k + j + 1; l <= i__2; ++l) {
++i__;
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(l,k+j) */
s += aa;
work[l] += aa;
}
work[k + j] += s;
}
/* j=k is special :process col A(k,0:k-1) */
s = 0.f;
i__1 = k - 2;
for (i__ = 0; i__ <= i__1; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k,i) */
work[i__] += aa;
s += aa;
}
/* i=k-1 */
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(k-1,k-1) */
s += aa;
work[i__] = s;
/* done with col j=k+1 */
i__1 = *n;
for (j = k + 1; j <= i__1; ++j) {
/* process col j-1 of A = A(j-1,0:k-1) */
s = 0.f;
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
aa = (r__1 = a[i__ + j * lda], dabs(r__1));
/* A(j-1,i) */
work[i__] += aa;
s += aa;
}
work[j - 1] += s;
}
i__ = isamax_(n, work, &c__1);
value = work[i__ - 1];
}
}
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
k = (*n + 1) / 2;
scale = 0.f;
s = 1.f;
if (noe == 1) {
/* n is odd */
if (ifm == 1) {
/* A is normal */
if (ilu == 0) {
/* A is upper */
i__1 = k - 3;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 2;
slassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale,
&s);
/* L at A(k,0) */
}
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = k + j - 1;
slassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
/* trap U at A(0,0) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = k - 1;
i__2 = lda + 1;
slassq_(&i__1, &a[k], &i__2, &scale, &s);
/* tri L at A(k,0) */
i__1 = lda + 1;
slassq_(&k, &a[k - 1], &i__1, &scale, &s);
/* tri U at A(k-1,0) */
} else {
/* ilu=1 & A is lower */
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - j - 1;
slassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
;
/* trap L at A(0,0) */
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
slassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
/* U at A(0,1) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, a, &i__1, &scale, &s);
/* tri L at A(0,0) */
i__1 = k - 1;
i__2 = lda + 1;
slassq_(&i__1, &a[lda], &i__2, &scale, &s);
/* tri U at A(0,1) */
}
} else {
/* A is xpose */
if (ilu == 0) {
/* A' is upper */
i__1 = k - 2;
for (j = 1; j <= i__1; ++j) {
slassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
/* U at A(0,k) */
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
slassq_(&k, &a[j * lda], &c__1, &scale, &s);
/* k by k-1 rect. at A(0,0) */
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 1;
slassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
scale, &s);
/* L at A(0,k-1) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = k - 1;
i__2 = lda + 1;
slassq_(&i__1, &a[k * lda], &i__2, &scale, &s);
/* tri U at A(0,k) */
i__1 = lda + 1;
slassq_(&k, &a[(k - 1) * lda], &i__1, &scale, &s);
/* tri L at A(0,k-1) */
} else {
/* A' is lower */
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
slassq_(&j, &a[j * lda], &c__1, &scale, &s);
/* U at A(0,0) */
}
i__1 = *n - 1;
for (j = k; j <= i__1; ++j) {
slassq_(&k, &a[j * lda], &c__1, &scale, &s);
/* k by k-1 rect. at A(0,k) */
}
i__1 = k - 3;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 2;
slassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
;
/* L at A(1,0) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, a, &i__1, &scale, &s);
/* tri U at A(0,0) */
i__1 = k - 1;
i__2 = lda + 1;
slassq_(&i__1, &a[1], &i__2, &scale, &s);
/* tri L at A(1,0) */
}
}
} else {
/* n is even */
if (ifm == 1) {
/* A is normal */
if (ilu == 0) {
/* A is upper */
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 1;
slassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale,
&s);
/* L at A(k+1,0) */
}
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = k + j;
slassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
/* trap U at A(0,0) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, &a[k + 1], &i__1, &scale, &s);
/* tri L at A(k+1,0) */
i__1 = lda + 1;
slassq_(&k, &a[k], &i__1, &scale, &s);
/* tri U at A(k,0) */
} else {
/* ilu=1 & A is lower */
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - j - 1;
slassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
;
/* trap L at A(1,0) */
}
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
slassq_(&j, &a[j * lda], &c__1, &scale, &s);
/* U at A(0,0) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, &a[1], &i__1, &scale, &s);
/* tri L at A(1,0) */
i__1 = lda + 1;
slassq_(&k, a, &i__1, &scale, &s);
/* tri U at A(0,0) */
}
} else {
/* A is xpose */
if (ilu == 0) {
/* A' is upper */
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
slassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
/* U at A(0,k+1) */
}
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
slassq_(&k, &a[j * lda], &c__1, &scale, &s);
/* k by k rect. at A(0,0) */
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 1;
slassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
scale, &s);
/* L at A(0,k) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, &a[(k + 1) * lda], &i__1, &scale, &s);
/* tri U at A(0,k+1) */
i__1 = lda + 1;
slassq_(&k, &a[k * lda], &i__1, &scale, &s);
/* tri L at A(0,k) */
} else {
/* A' is lower */
i__1 = k - 1;
for (j = 1; j <= i__1; ++j) {
slassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
/* U at A(0,1) */
}
i__1 = *n;
for (j = k + 1; j <= i__1; ++j) {
slassq_(&k, &a[j * lda], &c__1, &scale, &s);
/* k by k rect. at A(0,k+1) */
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = k - j - 1;
slassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
;
/* L at A(0,0) */
}
s += s;
/* double s for the off diagonal elements */
i__1 = lda + 1;
slassq_(&k, &a[lda], &i__1, &scale, &s);
/* tri L at A(0,1) */
i__1 = lda + 1;
slassq_(&k, a, &i__1, &scale, &s);
/* tri U at A(0,0) */
}
}
}
value = scale * sqrt(s);
}
ret_val = value;
return ret_val;
/* End of SLANSF */
} /* slansf_ */