aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/sgtts2.c
blob: afbe47bb39a380dfdb5cf37e7e624210ed8ff58e (plain) (tree)



































































































































































































































































                                                                              
/* sgtts2.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Subroutine */ int sgtts2_(integer *itrans, integer *n, integer *nrhs, real 
	*dl, real *d__, real *du, real *du2, integer *ipiv, real *b, integer *
	ldb)
{
    /* System generated locals */
    integer b_dim1, b_offset, i__1, i__2;

    /* Local variables */
    integer i__, j, ip;
    real temp;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  SGTTS2 solves one of the systems of equations */
/*     A*X = B  or  A'*X = B, */
/*  with a tridiagonal matrix A using the LU factorization computed */
/*  by SGTTRF. */

/*  Arguments */
/*  ========= */

/*  ITRANS  (input) INTEGER */
/*          Specifies the form of the system of equations. */
/*          = 0:  A * X = B  (No transpose) */
/*          = 1:  A'* X = B  (Transpose) */
/*          = 2:  A'* X = B  (Conjugate transpose = Transpose) */

/*  N       (input) INTEGER */
/*          The order of the matrix A. */

/*  NRHS    (input) INTEGER */
/*          The number of right hand sides, i.e., the number of columns */
/*          of the matrix B.  NRHS >= 0. */

/*  DL      (input) REAL array, dimension (N-1) */
/*          The (n-1) multipliers that define the matrix L from the */
/*          LU factorization of A. */

/*  D       (input) REAL array, dimension (N) */
/*          The n diagonal elements of the upper triangular matrix U from */
/*          the LU factorization of A. */

/*  DU      (input) REAL array, dimension (N-1) */
/*          The (n-1) elements of the first super-diagonal of U. */

/*  DU2     (input) REAL array, dimension (N-2) */
/*          The (n-2) elements of the second super-diagonal of U. */

/*  IPIV    (input) INTEGER array, dimension (N) */
/*          The pivot indices; for 1 <= i <= n, row i of the matrix was */
/*          interchanged with row IPIV(i).  IPIV(i) will always be either */
/*          i or i+1; IPIV(i) = i indicates a row interchange was not */
/*          required. */

/*  B       (input/output) REAL array, dimension (LDB,NRHS) */
/*          On entry, the matrix of right hand side vectors B. */
/*          On exit, B is overwritten by the solution vectors X. */

/*  LDB     (input) INTEGER */
/*          The leading dimension of the array B.  LDB >= max(1,N). */

/*  ===================================================================== */

/*     .. Local Scalars .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Quick return if possible */

    /* Parameter adjustments */
    --dl;
    --d__;
    --du;
    --du2;
    --ipiv;
    b_dim1 = *ldb;
    b_offset = 1 + b_dim1;
    b -= b_offset;

    /* Function Body */
    if (*n == 0 || *nrhs == 0) {
	return 0;
    }

    if (*itrans == 0) {

/*        Solve A*X = B using the LU factorization of A, */
/*        overwriting each right hand side vector with its solution. */

	if (*nrhs <= 1) {
	    j = 1;
L10:

/*           Solve L*x = b. */

	    i__1 = *n - 1;
	    for (i__ = 1; i__ <= i__1; ++i__) {
		ip = ipiv[i__];
		temp = b[i__ + 1 - ip + i__ + j * b_dim1] - dl[i__] * b[ip + 
			j * b_dim1];
		b[i__ + j * b_dim1] = b[ip + j * b_dim1];
		b[i__ + 1 + j * b_dim1] = temp;
/* L20: */
	    }

/*           Solve U*x = b. */

	    b[*n + j * b_dim1] /= d__[*n];
	    if (*n > 1) {
		b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n - 1] 
			* b[*n + j * b_dim1]) / d__[*n - 1];
	    }
	    for (i__ = *n - 2; i__ >= 1; --i__) {
		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[i__ 
			+ 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j * b_dim1]
			) / d__[i__];
/* L30: */
	    }
	    if (j < *nrhs) {
		++j;
		goto L10;
	    }
	} else {
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {

/*              Solve L*x = b. */

		i__2 = *n - 1;
		for (i__ = 1; i__ <= i__2; ++i__) {
		    if (ipiv[i__] == i__) {
			b[i__ + 1 + j * b_dim1] -= dl[i__] * b[i__ + j * 
				b_dim1];
		    } else {
			temp = b[i__ + j * b_dim1];
			b[i__ + j * b_dim1] = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = temp - dl[i__] * b[i__ + j *
				 b_dim1];
		    }
/* L40: */
		}

/*              Solve U*x = b. */

		b[*n + j * b_dim1] /= d__[*n];
		if (*n > 1) {
		    b[*n - 1 + j * b_dim1] = (b[*n - 1 + j * b_dim1] - du[*n 
			    - 1] * b[*n + j * b_dim1]) / d__[*n - 1];
		}
		for (i__ = *n - 2; i__ >= 1; --i__) {
		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__] * b[
			    i__ + 1 + j * b_dim1] - du2[i__] * b[i__ + 2 + j *
			     b_dim1]) / d__[i__];
/* L50: */
		}
/* L60: */
	    }
	}
    } else {

/*        Solve A' * X = B. */

	if (*nrhs <= 1) {

/*           Solve U'*x = b. */

	    j = 1;
L70:
	    b[j * b_dim1 + 1] /= d__[1];
	    if (*n > 1) {
		b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * b_dim1 
			+ 1]) / d__[2];
	    }
	    i__1 = *n;
	    for (i__ = 3; i__ <= i__1; ++i__) {
		b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] * b[
			i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 2 + j *
			 b_dim1]) / d__[i__];
/* L80: */
	    }

/*           Solve L'*x = b. */

	    for (i__ = *n - 1; i__ >= 1; --i__) {
		ip = ipiv[i__];
		temp = b[i__ + j * b_dim1] - dl[i__] * b[i__ + 1 + j * b_dim1]
			;
		b[i__ + j * b_dim1] = b[ip + j * b_dim1];
		b[ip + j * b_dim1] = temp;
/* L90: */
	    }
	    if (j < *nrhs) {
		++j;
		goto L70;
	    }

	} else {
	    i__1 = *nrhs;
	    for (j = 1; j <= i__1; ++j) {

/*              Solve U'*x = b. */

		b[j * b_dim1 + 1] /= d__[1];
		if (*n > 1) {
		    b[j * b_dim1 + 2] = (b[j * b_dim1 + 2] - du[1] * b[j * 
			    b_dim1 + 1]) / d__[2];
		}
		i__2 = *n;
		for (i__ = 3; i__ <= i__2; ++i__) {
		    b[i__ + j * b_dim1] = (b[i__ + j * b_dim1] - du[i__ - 1] *
			     b[i__ - 1 + j * b_dim1] - du2[i__ - 2] * b[i__ - 
			    2 + j * b_dim1]) / d__[i__];
/* L100: */
		}
		for (i__ = *n - 1; i__ >= 1; --i__) {
		    if (ipiv[i__] == i__) {
			b[i__ + j * b_dim1] -= dl[i__] * b[i__ + 1 + j * 
				b_dim1];
		    } else {
			temp = b[i__ + 1 + j * b_dim1];
			b[i__ + 1 + j * b_dim1] = b[i__ + j * b_dim1] - dl[
				i__] * temp;
			b[i__ + j * b_dim1] = temp;
		    }
/* L110: */
		}
/* L120: */
	    }
	}
    }

/*     End of SGTTS2 */

    return 0;
} /* sgtts2_ */