/* sgeev.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/* Subroutine */ int sgeev_(char *jobvl, char *jobvr, integer *n, real *a,
integer *lda, real *wr, real *wi, real *vl, integer *ldvl, real *vr,
integer *ldvr, real *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3;
real r__1, r__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, k;
real r__, cs, sn;
integer ihi;
real scl;
integer ilo;
real dum[1], eps;
integer ibal;
char side[1];
real anrm;
integer ierr, itau, iwrk, nout;
extern /* Subroutine */ int srot_(integer *, real *, integer *, real *,
integer *, real *, real *);
extern doublereal snrm2_(integer *, real *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int sscal_(integer *, real *, real *, integer *);
extern doublereal slapy2_(real *, real *);
extern /* Subroutine */ int slabad_(real *, real *);
logical scalea;
real cscale;
extern /* Subroutine */ int sgebak_(char *, char *, integer *, integer *,
integer *, real *, integer *, real *, integer *, integer *), sgebal_(char *, integer *, real *, integer *,
integer *, integer *, real *, integer *);
extern doublereal slamch_(char *), slange_(char *, integer *,
integer *, real *, integer *, real *);
extern /* Subroutine */ int sgehrd_(integer *, integer *, integer *, real
*, integer *, real *, real *, integer *, integer *), xerbla_(char
*, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
logical select[1];
real bignum;
extern /* Subroutine */ int slascl_(char *, integer *, integer *, real *,
real *, integer *, integer *, real *, integer *, integer *);
extern integer isamax_(integer *, real *, integer *);
extern /* Subroutine */ int slacpy_(char *, integer *, integer *, real *,
integer *, real *, integer *), slartg_(real *, real *,
real *, real *, real *), sorghr_(integer *, integer *, integer *,
real *, integer *, real *, real *, integer *, integer *), shseqr_(
char *, char *, integer *, integer *, integer *, real *, integer *
, real *, real *, real *, integer *, real *, integer *, integer *), strevc_(char *, char *, logical *, integer *,
real *, integer *, real *, integer *, real *, integer *, integer *
, integer *, real *, integer *);
integer minwrk, maxwrk;
logical wantvl;
real smlnum;
integer hswork;
logical lquery, wantvr;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* SGEEV computes for an N-by-N real nonsymmetric matrix A, the */
/* eigenvalues and, optionally, the left and/or right eigenvectors. */
/* The right eigenvector v(j) of A satisfies */
/* A * v(j) = lambda(j) * v(j) */
/* where lambda(j) is its eigenvalue. */
/* The left eigenvector u(j) of A satisfies */
/* u(j)**H * A = lambda(j) * u(j)**H */
/* where u(j)**H denotes the conjugate transpose of u(j). */
/* The computed eigenvectors are normalized to have Euclidean norm */
/* equal to 1 and largest component real. */
/* Arguments */
/* ========= */
/* JOBVL (input) CHARACTER*1 */
/* = 'N': left eigenvectors of A are not computed; */
/* = 'V': left eigenvectors of A are computed. */
/* JOBVR (input) CHARACTER*1 */
/* = 'N': right eigenvectors of A are not computed; */
/* = 'V': right eigenvectors of A are computed. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) REAL array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* On exit, A has been overwritten. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* WR (output) REAL array, dimension (N) */
/* WI (output) REAL array, dimension (N) */
/* WR and WI contain the real and imaginary parts, */
/* respectively, of the computed eigenvalues. Complex */
/* conjugate pairs of eigenvalues appear consecutively */
/* with the eigenvalue having the positive imaginary part */
/* first. */
/* VL (output) REAL array, dimension (LDVL,N) */
/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/* after another in the columns of VL, in the same order */
/* as their eigenvalues. */
/* If JOBVL = 'N', VL is not referenced. */
/* If the j-th eigenvalue is real, then u(j) = VL(:,j), */
/* the j-th column of VL. */
/* If the j-th and (j+1)-st eigenvalues form a complex */
/* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
/* u(j+1) = VL(:,j) - i*VL(:,j+1). */
/* LDVL (input) INTEGER */
/* The leading dimension of the array VL. LDVL >= 1; if */
/* JOBVL = 'V', LDVL >= N. */
/* VR (output) REAL array, dimension (LDVR,N) */
/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/* after another in the columns of VR, in the same order */
/* as their eigenvalues. */
/* If JOBVR = 'N', VR is not referenced. */
/* If the j-th eigenvalue is real, then v(j) = VR(:,j), */
/* the j-th column of VR. */
/* If the j-th and (j+1)-st eigenvalues form a complex */
/* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
/* v(j+1) = VR(:,j) - i*VR(:,j+1). */
/* LDVR (input) INTEGER */
/* The leading dimension of the array VR. LDVR >= 1; if */
/* JOBVR = 'V', LDVR >= N. */
/* WORK (workspace/output) REAL array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,3*N), and */
/* if JOBVL = 'V' or JOBVR = 'V', LWORK >= 4*N. For good */
/* performance, LWORK must generally be larger. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the QR algorithm failed to compute all the */
/* eigenvalues, and no eigenvectors have been computed; */
/* elements i+1:N of WR and WI contain eigenvalues which */
/* have converged. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--wr;
--wi;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
wantvl = lsame_(jobvl, "V");
wantvr = lsame_(jobvr, "V");
if (! wantvl && ! lsame_(jobvl, "N")) {
*info = -1;
} else if (! wantvr && ! lsame_(jobvr, "N")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldvl < 1 || wantvl && *ldvl < *n) {
*info = -9;
} else if (*ldvr < 1 || wantvr && *ldvr < *n) {
*info = -11;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by SHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case.) */
if (*info == 0) {
if (*n == 0) {
minwrk = 1;
maxwrk = 1;
} else {
maxwrk = (*n << 1) + *n * ilaenv_(&c__1, "SGEHRD", " ", n, &c__1,
n, &c__0);
if (wantvl) {
minwrk = *n << 2;
/* Computing MAX */
i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
"SORGHR", " ", n, &c__1, n, &c_n1);
maxwrk = max(i__1,i__2);
shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
hswork = work[1];
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
n + hswork;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n << 2;
maxwrk = max(i__1,i__2);
} else if (wantvr) {
minwrk = *n << 2;
/* Computing MAX */
i__1 = maxwrk, i__2 = (*n << 1) + (*n - 1) * ilaenv_(&c__1,
"SORGHR", " ", n, &c__1, n, &c_n1);
maxwrk = max(i__1,i__2);
shseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
hswork = work[1];
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
n + hswork;
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n << 2;
maxwrk = max(i__1,i__2);
} else {
minwrk = *n * 3;
shseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
hswork = work[1];
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + 1, i__1 = max(i__1,i__2), i__2 = *
n + hswork;
maxwrk = max(i__1,i__2);
}
maxwrk = max(maxwrk,minwrk);
}
work[1] = (real) maxwrk;
if (*lwork < minwrk && ! lquery) {
*info = -13;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("SGEEV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get machine constants */
eps = slamch_("P");
smlnum = slamch_("S");
bignum = 1.f / smlnum;
slabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1.f / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = slange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0.f && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
slascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}
/* Balance the matrix */
/* (Workspace: need N) */
ibal = 1;
sgebal_("B", n, &a[a_offset], lda, &ilo, &ihi, &work[ibal], &ierr);
/* Reduce to upper Hessenberg form */
/* (Workspace: need 3*N, prefer 2*N+N*NB) */
itau = ibal + *n;
iwrk = itau + *n;
i__1 = *lwork - iwrk + 1;
sgehrd_(n, &ilo, &ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1,
&ierr);
if (wantvl) {
/* Want left eigenvectors */
/* Copy Householder vectors to VL */
*(unsigned char *)side = 'L';
slacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
;
/* Generate orthogonal matrix in VL */
/* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
i__1 = *lwork - iwrk + 1;
sorghr_(n, &ilo, &ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk],
&i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VL */
/* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
shseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
vl[vl_offset], ldvl, &work[iwrk], &i__1, info);
if (wantvr) {
/* Want left and right eigenvectors */
/* Copy Schur vectors to VR */
*(unsigned char *)side = 'B';
slacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
}
} else if (wantvr) {
/* Want right eigenvectors */
/* Copy Householder vectors to VR */
*(unsigned char *)side = 'R';
slacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
;
/* Generate orthogonal matrix in VR */
/* (Workspace: need 3*N-1, prefer 2*N+(N-1)*NB) */
i__1 = *lwork - iwrk + 1;
sorghr_(n, &ilo, &ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk],
&i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VR */
/* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
shseqr_("S", "V", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
} else {
/* Compute eigenvalues only */
/* (Workspace: need N+1, prefer N+HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
shseqr_("E", "N", n, &ilo, &ihi, &a[a_offset], lda, &wr[1], &wi[1], &
vr[vr_offset], ldvr, &work[iwrk], &i__1, info);
}
/* If INFO > 0 from SHSEQR, then quit */
if (*info > 0) {
goto L50;
}
if (wantvl || wantvr) {
/* Compute left and/or right eigenvectors */
/* (Workspace: need 4*N) */
strevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
&vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
}
if (wantvl) {
/* Undo balancing of left eigenvectors */
/* (Workspace: need N) */
sgebak_("B", "L", n, &ilo, &ihi, &work[ibal], n, &vl[vl_offset], ldvl,
&ierr);
/* Normalize left eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (wi[i__] == 0.f) {
scl = 1.f / snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
} else if (wi[i__] > 0.f) {
r__1 = snrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
r__2 = snrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
scl = 1.f / slapy2_(&r__1, &r__2);
sscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
sscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
r__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
r__2 = vl[k + (i__ + 1) * vl_dim1];
work[iwrk + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L10: */
}
k = isamax_(n, &work[iwrk], &c__1);
slartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
&cs, &sn, &r__);
srot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
vl_dim1 + 1], &c__1, &cs, &sn);
vl[k + (i__ + 1) * vl_dim1] = 0.f;
}
/* L20: */
}
}
if (wantvr) {
/* Undo balancing of right eigenvectors */
/* (Workspace: need N) */
sgebak_("B", "R", n, &ilo, &ihi, &work[ibal], n, &vr[vr_offset], ldvr,
&ierr);
/* Normalize right eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (wi[i__] == 0.f) {
scl = 1.f / snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
} else if (wi[i__] > 0.f) {
r__1 = snrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
r__2 = snrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
scl = 1.f / slapy2_(&r__1, &r__2);
sscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
sscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
r__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
r__2 = vr[k + (i__ + 1) * vr_dim1];
work[iwrk + k - 1] = r__1 * r__1 + r__2 * r__2;
/* L30: */
}
k = isamax_(n, &work[iwrk], &c__1);
slartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
&cs, &sn, &r__);
srot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
vr_dim1 + 1], &c__1, &cs, &sn);
vr[k + (i__ + 1) * vr_dim1] = 0.f;
}
/* L40: */
}
}
/* Undo scaling if necessary */
L50:
if (scalea) {
i__1 = *n - *info;
/* Computing MAX */
i__3 = *n - *info;
i__2 = max(i__3,1);
slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
1], &i__2, &ierr);
i__1 = *n - *info;
/* Computing MAX */
i__3 = *n - *info;
i__2 = max(i__3,1);
slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
1], &i__2, &ierr);
if (*info > 0) {
i__1 = ilo - 1;
slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
n, &ierr);
i__1 = ilo - 1;
slascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
n, &ierr);
}
}
work[1] = (real) maxwrk;
return 0;
/* End of SGEEV */
} /* sgeev_ */