/* dtgex2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__4 = 4;
static doublereal c_b5 = 0.;
static integer c__1 = 1;
static integer c__2 = 2;
static doublereal c_b42 = 1.;
static doublereal c_b48 = -1.;
static integer c__0 = 0;
/* Subroutine */ int dtgex2_(logical *wantq, logical *wantz, integer *n,
doublereal *a, integer *lda, doublereal *b, integer *ldb, doublereal *
q, integer *ldq, doublereal *z__, integer *ldz, integer *j1, integer *
n1, integer *n2, doublereal *work, integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, q_dim1, q_offset, z_dim1,
z_offset, i__1, i__2;
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
doublereal f, g;
integer i__, m;
doublereal s[16] /* was [4][4] */, t[16] /* was [4][4] */, be[2], ai[2]
, ar[2], sa, sb, li[16] /* was [4][4] */, ir[16] /*
was [4][4] */, ss, ws, eps;
logical weak;
doublereal ddum;
integer idum;
doublereal taul[4], dsum;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
doublereal taur[4], scpy[16] /* was [4][4] */, tcpy[16] /*
was [4][4] */;
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
doublereal scale, bqra21, brqa21;
extern /* Subroutine */ int dgemm_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *);
doublereal licop[16] /* was [4][4] */;
integer linfo;
doublereal ircop[16] /* was [4][4] */, dnorm;
integer iwork[4];
extern /* Subroutine */ int dlagv2_(doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *
, doublereal *, doublereal *, doublereal *), dgeqr2_(integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *), dgerq2_(integer *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *), dorg2r_(integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
doublereal *, integer *), dorgr2_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *),
dorm2r_(char *, char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
doublereal *, integer *), dormr2_(char *, char *,
integer *, integer *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, doublereal *, integer *), dtgsy2_(char *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *, doublereal *,
integer *, integer *, integer *);
extern doublereal dlamch_(char *);
doublereal dscale;
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), dlaset_(char *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *), dlassq_(integer *
, doublereal *, integer *, doublereal *, doublereal *);
logical dtrong;
doublereal thresh, smlnum;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DTGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22) */
/* of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair */
/* (A, B) by an orthogonal equivalence transformation. */
/* (A, B) must be in generalized real Schur canonical form (as returned */
/* by DGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2 */
/* diagonal blocks. B is upper triangular. */
/* Optionally, the matrices Q and Z of generalized Schur vectors are */
/* updated. */
/* Q(in) * A(in) * Z(in)' = Q(out) * A(out) * Z(out)' */
/* Q(in) * B(in) * Z(in)' = Q(out) * B(out) * Z(out)' */
/* Arguments */
/* ========= */
/* WANTQ (input) LOGICAL */
/* .TRUE. : update the left transformation matrix Q; */
/* .FALSE.: do not update Q. */
/* WANTZ (input) LOGICAL */
/* .TRUE. : update the right transformation matrix Z; */
/* .FALSE.: do not update Z. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* A (input/output) DOUBLE PRECISION arrays, dimensions (LDA,N) */
/* On entry, the matrix A in the pair (A, B). */
/* On exit, the updated matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION arrays, dimensions (LDB,N) */
/* On entry, the matrix B in the pair (A, B). */
/* On exit, the updated matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* Q (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/* On entry, if WANTQ = .TRUE., the orthogonal matrix Q. */
/* On exit, the updated matrix Q. */
/* Not referenced if WANTQ = .FALSE.. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= 1. */
/* If WANTQ = .TRUE., LDQ >= N. */
/* Z (input/output) DOUBLE PRECISION array, dimension (LDZ,N) */
/* On entry, if WANTZ =.TRUE., the orthogonal matrix Z. */
/* On exit, the updated matrix Z. */
/* Not referenced if WANTZ = .FALSE.. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1. */
/* If WANTZ = .TRUE., LDZ >= N. */
/* J1 (input) INTEGER */
/* The index to the first block (A11, B11). 1 <= J1 <= N. */
/* N1 (input) INTEGER */
/* The order of the first block (A11, B11). N1 = 0, 1 or 2. */
/* N2 (input) INTEGER */
/* The order of the second block (A22, B22). N2 = 0, 1 or 2. */
/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)). */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. */
/* LWORK >= MAX( 1, N*(N2+N1), (N2+N1)*(N2+N1)*2 ) */
/* INFO (output) INTEGER */
/* =0: Successful exit */
/* >0: If INFO = 1, the transformed matrix (A, B) would be */
/* too far from generalized Schur form; the blocks are */
/* not swapped and (A, B) and (Q, Z) are unchanged. */
/* The problem of swapping is too ill-conditioned. */
/* <0: If INFO = -16: LWORK is too small. Appropriate value */
/* for LWORK is returned in WORK(1). */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/* Umea University, S-901 87 Umea, Sweden. */
/* In the current code both weak and strong stability tests are */
/* performed. The user can omit the strong stability test by changing */
/* the internal logical parameter WANDS to .FALSE.. See ref. [2] for */
/* details. */
/* [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the */
/* Generalized Real Schur Form of a Regular Matrix Pair (A, B), in */
/* M.S. Moonen et al (eds), Linear Algebra for Large Scale and */
/* Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218. */
/* [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified */
/* Eigenvalues of a Regular Matrix Pair (A, B) and Condition */
/* Estimation: Theory, Algorithms and Software, */
/* Report UMINF - 94.04, Department of Computing Science, Umea */
/* University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working */
/* Note 87. To appear in Numerical Algorithms, 1996. */
/* ===================================================================== */
/* Replaced various illegal calls to DCOPY by calls to DLASET, or by DO */
/* loops. Sven Hammarling, 1/5/02. */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
/* Function Body */
*info = 0;
/* Quick return if possible */
if (*n <= 1 || *n1 <= 0 || *n2 <= 0) {
return 0;
}
if (*n1 > *n || *j1 + *n1 > *n) {
return 0;
}
m = *n1 + *n2;
/* Computing MAX */
i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
if (*lwork < max(i__1,i__2)) {
*info = -16;
/* Computing MAX */
i__1 = 1, i__2 = *n * m, i__1 = max(i__1,i__2), i__2 = m * m << 1;
work[1] = (doublereal) max(i__1,i__2);
return 0;
}
weak = FALSE_;
dtrong = FALSE_;
/* Make a local copy of selected block */
dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, li, &c__4);
dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, ir, &c__4);
dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, s, &c__4);
dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, t, &c__4);
/* Compute threshold for testing acceptance of swapping. */
eps = dlamch_("P");
smlnum = dlamch_("S") / eps;
dscale = 0.;
dsum = 1.;
dlacpy_("Full", &m, &m, s, &c__4, &work[1], &m);
i__1 = m * m;
dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
dlacpy_("Full", &m, &m, t, &c__4, &work[1], &m);
i__1 = m * m;
dlassq_(&i__1, &work[1], &c__1, &dscale, &dsum);
dnorm = dscale * sqrt(dsum);
/* Computing MAX */
d__1 = eps * 10. * dnorm;
thresh = max(d__1,smlnum);
if (m == 2) {
/* CASE 1: Swap 1-by-1 and 1-by-1 blocks. */
/* Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks */
/* using Givens rotations and perform the swap tentatively. */
f = s[5] * t[0] - t[5] * s[0];
g = s[5] * t[4] - t[5] * s[4];
sb = abs(t[5]);
sa = abs(s[5]);
dlartg_(&f, &g, &ir[4], ir, &ddum);
ir[1] = -ir[4];
ir[5] = ir[0];
drot_(&c__2, s, &c__1, &s[4], &c__1, ir, &ir[1]);
drot_(&c__2, t, &c__1, &t[4], &c__1, ir, &ir[1]);
if (sa >= sb) {
dlartg_(s, &s[1], li, &li[1], &ddum);
} else {
dlartg_(t, &t[1], li, &li[1], &ddum);
}
drot_(&c__2, s, &c__4, &s[1], &c__4, li, &li[1]);
drot_(&c__2, t, &c__4, &t[1], &c__4, li, &li[1]);
li[5] = li[0];
li[4] = -li[1];
/* Weak stability test: */
/* |S21| + |T21| <= O(EPS * F-norm((S, T))) */
ws = abs(s[1]) + abs(t[1]);
weak = ws <= thresh;
if (! weak) {
goto L70;
}
if (TRUE_) {
/* Strong stability test: */
/* F-norm((A-QL'*S*QR, B-QL'*T*QR)) <= O(EPS*F-norm((A,B))) */
dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
+ 1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
c_b42, &work[m * m + 1], &m);
dscale = 0.;
dsum = 1.;
i__1 = m * m;
dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
+ 1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "T", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
c_b42, &work[m * m + 1], &m);
i__1 = m * m;
dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
ss = dscale * sqrt(dsum);
dtrong = ss <= thresh;
if (! dtrong) {
goto L70;
}
}
/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
i__1 = *j1 + 1;
drot_(&i__1, &a[*j1 * a_dim1 + 1], &c__1, &a[(*j1 + 1) * a_dim1 + 1],
&c__1, ir, &ir[1]);
i__1 = *j1 + 1;
drot_(&i__1, &b[*j1 * b_dim1 + 1], &c__1, &b[(*j1 + 1) * b_dim1 + 1],
&c__1, ir, &ir[1]);
i__1 = *n - *j1 + 1;
drot_(&i__1, &a[*j1 + *j1 * a_dim1], lda, &a[*j1 + 1 + *j1 * a_dim1],
lda, li, &li[1]);
i__1 = *n - *j1 + 1;
drot_(&i__1, &b[*j1 + *j1 * b_dim1], ldb, &b[*j1 + 1 + *j1 * b_dim1],
ldb, li, &li[1]);
/* Set N1-by-N2 (2,1) - blocks to ZERO. */
a[*j1 + 1 + *j1 * a_dim1] = 0.;
b[*j1 + 1 + *j1 * b_dim1] = 0.;
/* Accumulate transformations into Q and Z if requested. */
if (*wantz) {
drot_(n, &z__[*j1 * z_dim1 + 1], &c__1, &z__[(*j1 + 1) * z_dim1 +
1], &c__1, ir, &ir[1]);
}
if (*wantq) {
drot_(n, &q[*j1 * q_dim1 + 1], &c__1, &q[(*j1 + 1) * q_dim1 + 1],
&c__1, li, &li[1]);
}
/* Exit with INFO = 0 if swap was successfully performed. */
return 0;
} else {
/* CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2 */
/* and 2-by-2 blocks. */
/* Solve the generalized Sylvester equation */
/* S11 * R - L * S22 = SCALE * S12 */
/* T11 * R - L * T22 = SCALE * T12 */
/* for R and L. Solutions in LI and IR. */
dlacpy_("Full", n1, n2, &t[(*n1 + 1 << 2) - 4], &c__4, li, &c__4);
dlacpy_("Full", n1, n2, &s[(*n1 + 1 << 2) - 4], &c__4, &ir[*n2 + 1 + (
*n1 + 1 << 2) - 5], &c__4);
dtgsy2_("N", &c__0, n1, n2, s, &c__4, &s[*n1 + 1 + (*n1 + 1 << 2) - 5]
, &c__4, &ir[*n2 + 1 + (*n1 + 1 << 2) - 5], &c__4, t, &c__4, &
t[*n1 + 1 + (*n1 + 1 << 2) - 5], &c__4, li, &c__4, &scale, &
dsum, &dscale, iwork, &idum, &linfo);
/* Compute orthogonal matrix QL: */
/* QL' * LI = [ TL ] */
/* [ 0 ] */
/* where */
/* LI = [ -L ] */
/* [ SCALE * identity(N2) ] */
i__1 = *n2;
for (i__ = 1; i__ <= i__1; ++i__) {
dscal_(n1, &c_b48, &li[(i__ << 2) - 4], &c__1);
li[*n1 + i__ + (i__ << 2) - 5] = scale;
/* L10: */
}
dgeqr2_(&m, n2, li, &c__4, taul, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
dorg2r_(&m, &m, n2, li, &c__4, taul, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
/* Compute orthogonal matrix RQ: */
/* IR * RQ' = [ 0 TR], */
/* where IR = [ SCALE * identity(N1), R ] */
i__1 = *n1;
for (i__ = 1; i__ <= i__1; ++i__) {
ir[*n2 + i__ + (i__ << 2) - 5] = scale;
/* L20: */
}
dgerq2_(n1, &m, &ir[*n2], &c__4, taur, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
dorgr2_(&m, &m, n1, ir, &c__4, taur, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
/* Perform the swapping tentatively: */
dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
s, &c__4);
dgemm_("T", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "T", &m, &m, &m, &c_b42, &work[1], &m, ir, &c__4, &c_b5,
t, &c__4);
dlacpy_("F", &m, &m, s, &c__4, scpy, &c__4);
dlacpy_("F", &m, &m, t, &c__4, tcpy, &c__4);
dlacpy_("F", &m, &m, ir, &c__4, ircop, &c__4);
dlacpy_("F", &m, &m, li, &c__4, licop, &c__4);
/* Triangularize the B-part by an RQ factorization. */
/* Apply transformation (from left) to A-part, giving S. */
dgerq2_(&m, &m, t, &c__4, taur, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
dormr2_("R", "T", &m, &m, &m, t, &c__4, taur, s, &c__4, &work[1], &
linfo);
if (linfo != 0) {
goto L70;
}
dormr2_("L", "N", &m, &m, &m, t, &c__4, taur, ir, &c__4, &work[1], &
linfo);
if (linfo != 0) {
goto L70;
}
/* Compute F-norm(S21) in BRQA21. (T21 is 0.) */
dscale = 0.;
dsum = 1.;
i__1 = *n2;
for (i__ = 1; i__ <= i__1; ++i__) {
dlassq_(n1, &s[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &dsum);
/* L30: */
}
brqa21 = dscale * sqrt(dsum);
/* Triangularize the B-part by a QR factorization. */
/* Apply transformation (from right) to A-part, giving S. */
dgeqr2_(&m, &m, tcpy, &c__4, taul, &work[1], &linfo);
if (linfo != 0) {
goto L70;
}
dorm2r_("L", "T", &m, &m, &m, tcpy, &c__4, taul, scpy, &c__4, &work[1]
, info);
dorm2r_("R", "N", &m, &m, &m, tcpy, &c__4, taul, licop, &c__4, &work[
1], info);
if (linfo != 0) {
goto L70;
}
/* Compute F-norm(S21) in BQRA21. (T21 is 0.) */
dscale = 0.;
dsum = 1.;
i__1 = *n2;
for (i__ = 1; i__ <= i__1; ++i__) {
dlassq_(n1, &scpy[*n2 + 1 + (i__ << 2) - 5], &c__1, &dscale, &
dsum);
/* L40: */
}
bqra21 = dscale * sqrt(dsum);
/* Decide which method to use. */
/* Weak stability test: */
/* F-norm(S21) <= O(EPS * F-norm((S, T))) */
if (bqra21 <= brqa21 && bqra21 <= thresh) {
dlacpy_("F", &m, &m, scpy, &c__4, s, &c__4);
dlacpy_("F", &m, &m, tcpy, &c__4, t, &c__4);
dlacpy_("F", &m, &m, ircop, &c__4, ir, &c__4);
dlacpy_("F", &m, &m, licop, &c__4, li, &c__4);
} else if (brqa21 >= thresh) {
goto L70;
}
/* Set lower triangle of B-part to zero */
i__1 = m - 1;
i__2 = m - 1;
dlaset_("Lower", &i__1, &i__2, &c_b5, &c_b5, &t[1], &c__4);
if (TRUE_) {
/* Strong stability test: */
/* F-norm((A-QL*S*QR', B-QL*T*QR')) <= O(EPS*F-norm((A,B))) */
dlacpy_("Full", &m, &m, &a[*j1 + *j1 * a_dim1], lda, &work[m * m
+ 1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, s, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
c_b42, &work[m * m + 1], &m);
dscale = 0.;
dsum = 1.;
i__1 = m * m;
dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
dlacpy_("Full", &m, &m, &b[*j1 + *j1 * b_dim1], ldb, &work[m * m
+ 1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, t, &c__4, &c_b5, &
work[1], &m);
dgemm_("N", "N", &m, &m, &m, &c_b48, &work[1], &m, ir, &c__4, &
c_b42, &work[m * m + 1], &m);
i__1 = m * m;
dlassq_(&i__1, &work[m * m + 1], &c__1, &dscale, &dsum);
ss = dscale * sqrt(dsum);
dtrong = ss <= thresh;
if (! dtrong) {
goto L70;
}
}
/* If the swap is accepted ("weakly" and "strongly"), apply the */
/* transformations and set N1-by-N2 (2,1)-block to zero. */
dlaset_("Full", n1, n2, &c_b5, &c_b5, &s[*n2], &c__4);
/* copy back M-by-M diagonal block starting at index J1 of (A, B) */
dlacpy_("F", &m, &m, s, &c__4, &a[*j1 + *j1 * a_dim1], lda)
;
dlacpy_("F", &m, &m, t, &c__4, &b[*j1 + *j1 * b_dim1], ldb)
;
dlaset_("Full", &c__4, &c__4, &c_b5, &c_b5, t, &c__4);
/* Standardize existing 2-by-2 blocks. */
i__1 = m * m;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
/* L50: */
}
work[1] = 1.;
t[0] = 1.;
idum = *lwork - m * m - 2;
if (*n2 > 1) {
dlagv2_(&a[*j1 + *j1 * a_dim1], lda, &b[*j1 + *j1 * b_dim1], ldb,
ar, ai, be, &work[1], &work[2], t, &t[1]);
work[m + 1] = -work[2];
work[m + 2] = work[1];
t[*n2 + (*n2 << 2) - 5] = t[0];
t[4] = -t[1];
}
work[m * m] = 1.;
t[m + (m << 2) - 5] = 1.;
if (*n1 > 1) {
dlagv2_(&a[*j1 + *n2 + (*j1 + *n2) * a_dim1], lda, &b[*j1 + *n2 +
(*j1 + *n2) * b_dim1], ldb, taur, taul, &work[m * m + 1],
&work[*n2 * m + *n2 + 1], &work[*n2 * m + *n2 + 2], &t[*
n2 + 1 + (*n2 + 1 << 2) - 5], &t[m + (m - 1 << 2) - 5]);
work[m * m] = work[*n2 * m + *n2 + 1];
work[m * m - 1] = -work[*n2 * m + *n2 + 2];
t[m + (m << 2) - 5] = t[*n2 + 1 + (*n2 + 1 << 2) - 5];
t[m - 1 + (m << 2) - 5] = -t[m + (m - 1 << 2) - 5];
}
dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &a[*j1 + (*j1 + *
n2) * a_dim1], lda, &c_b5, &work[m * m + 1], n2);
dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &a[*j1 + (*j1 + *n2) *
a_dim1], lda);
dgemm_("T", "N", n2, n1, n2, &c_b42, &work[1], &m, &b[*j1 + (*j1 + *
n2) * b_dim1], ldb, &c_b5, &work[m * m + 1], n2);
dlacpy_("Full", n2, n1, &work[m * m + 1], n2, &b[*j1 + (*j1 + *n2) *
b_dim1], ldb);
dgemm_("N", "N", &m, &m, &m, &c_b42, li, &c__4, &work[1], &m, &c_b5, &
work[m * m + 1], &m);
dlacpy_("Full", &m, &m, &work[m * m + 1], &m, li, &c__4);
dgemm_("N", "N", n2, n1, n1, &c_b42, &a[*j1 + (*j1 + *n2) * a_dim1],
lda, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
n2);
dlacpy_("Full", n2, n1, &work[1], n2, &a[*j1 + (*j1 + *n2) * a_dim1],
lda);
dgemm_("N", "N", n2, n1, n1, &c_b42, &b[*j1 + (*j1 + *n2) * b_dim1],
ldb, &t[*n2 + 1 + (*n2 + 1 << 2) - 5], &c__4, &c_b5, &work[1],
n2);
dlacpy_("Full", n2, n1, &work[1], n2, &b[*j1 + (*j1 + *n2) * b_dim1],
ldb);
dgemm_("T", "N", &m, &m, &m, &c_b42, ir, &c__4, t, &c__4, &c_b5, &
work[1], &m);
dlacpy_("Full", &m, &m, &work[1], &m, ir, &c__4);
/* Accumulate transformations into Q and Z if requested. */
if (*wantq) {
dgemm_("N", "N", n, &m, &m, &c_b42, &q[*j1 * q_dim1 + 1], ldq, li,
&c__4, &c_b5, &work[1], n);
dlacpy_("Full", n, &m, &work[1], n, &q[*j1 * q_dim1 + 1], ldq);
}
if (*wantz) {
dgemm_("N", "N", n, &m, &m, &c_b42, &z__[*j1 * z_dim1 + 1], ldz,
ir, &c__4, &c_b5, &work[1], n);
dlacpy_("Full", n, &m, &work[1], n, &z__[*j1 * z_dim1 + 1], ldz);
}
/* Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and */
/* (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)). */
i__ = *j1 + m;
if (i__ <= *n) {
i__1 = *n - i__ + 1;
dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &a[*j1 + i__ *
a_dim1], lda, &c_b5, &work[1], &m);
i__1 = *n - i__ + 1;
dlacpy_("Full", &m, &i__1, &work[1], &m, &a[*j1 + i__ * a_dim1],
lda);
i__1 = *n - i__ + 1;
dgemm_("T", "N", &m, &i__1, &m, &c_b42, li, &c__4, &b[*j1 + i__ *
b_dim1], lda, &c_b5, &work[1], &m);
i__1 = *n - i__ + 1;
dlacpy_("Full", &m, &i__1, &work[1], &m, &b[*j1 + i__ * b_dim1],
ldb);
}
i__ = *j1 - 1;
if (i__ > 0) {
dgemm_("N", "N", &i__, &m, &m, &c_b42, &a[*j1 * a_dim1 + 1], lda,
ir, &c__4, &c_b5, &work[1], &i__);
dlacpy_("Full", &i__, &m, &work[1], &i__, &a[*j1 * a_dim1 + 1],
lda);
dgemm_("N", "N", &i__, &m, &m, &c_b42, &b[*j1 * b_dim1 + 1], ldb,
ir, &c__4, &c_b5, &work[1], &i__);
dlacpy_("Full", &i__, &m, &work[1], &i__, &b[*j1 * b_dim1 + 1],
ldb);
}
/* Exit with INFO = 0 if swap was successfully performed. */
return 0;
}
/* Exit with INFO = 1 if swap was rejected. */
L70:
*info = 1;
return 0;
/* End of DTGEX2 */
} /* dtgex2_ */