/* dtbtrs.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dtbtrs_(char *uplo, char *trans, char *diag, integer *n,
integer *kd, integer *nrhs, doublereal *ab, integer *ldab, doublereal
*b, integer *ldb, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, b_dim1, b_offset, i__1;
/* Local variables */
integer j;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dtbsv_(char *, char *, char *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
logical nounit;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DTBTRS solves a triangular system of the form */
/* A * X = B or A**T * X = B, */
/* where A is a triangular band matrix of order N, and B is an */
/* N-by NRHS matrix. A check is made to verify that A is nonsingular. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': A is upper triangular; */
/* = 'L': A is lower triangular. */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate transpose = Transpose) */
/* DIAG (input) CHARACTER*1 */
/* = 'N': A is non-unit triangular; */
/* = 'U': A is unit triangular. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* KD (input) INTEGER */
/* The number of superdiagonals or subdiagonals of the */
/* triangular band matrix A. KD >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* AB (input) DOUBLE PRECISION array, dimension (LDAB,N) */
/* The upper or lower triangular band matrix A, stored in the */
/* first kd+1 rows of AB. The j-th column of A is stored */
/* in the j-th column of the array AB as follows: */
/* if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd). */
/* If DIAG = 'U', the diagonal elements of A are not referenced */
/* and are assumed to be 1. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KD+1. */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* On entry, the right hand side matrix B. */
/* On exit, if INFO = 0, the solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the i-th diagonal element of A is zero, */
/* indicating that the matrix is singular and the */
/* solutions X have not been computed. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
nounit = lsame_(diag, "N");
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (! lsame_(trans, "N") && ! lsame_(trans,
"T") && ! lsame_(trans, "C")) {
*info = -2;
} else if (! nounit && ! lsame_(diag, "U")) {
*info = -3;
} else if (*n < 0) {
*info = -4;
} else if (*kd < 0) {
*info = -5;
} else if (*nrhs < 0) {
*info = -6;
} else if (*ldab < *kd + 1) {
*info = -8;
} else if (*ldb < max(1,*n)) {
*info = -10;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DTBTRS", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Check for singularity. */
if (nounit) {
if (upper) {
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
if (ab[*kd + 1 + *info * ab_dim1] == 0.) {
return 0;
}
/* L10: */
}
} else {
i__1 = *n;
for (*info = 1; *info <= i__1; ++(*info)) {
if (ab[*info * ab_dim1 + 1] == 0.) {
return 0;
}
/* L20: */
}
}
}
*info = 0;
/* Solve A * X = B or A' * X = B. */
i__1 = *nrhs;
for (j = 1; j <= i__1; ++j) {
dtbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &b[j * b_dim1
+ 1], &c__1);
/* L30: */
}
return 0;
/* End of DTBTRS */
} /* dtbtrs_ */