/* dstegr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dstegr_(char *jobz, char *range, integer *n, doublereal *
d__, doublereal *e, doublereal *vl, doublereal *vu, integer *il,
integer *iu, doublereal *abstol, integer *m, doublereal *w,
doublereal *z__, integer *ldz, integer *isuppz, doublereal *work,
integer *lwork, integer *iwork, integer *liwork, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset;
/* Local variables */
extern /* Subroutine */ int dstemr_(char *, char *, integer *, doublereal
*, doublereal *, doublereal *, doublereal *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, integer *,
integer *, logical *, doublereal *, integer *, integer *, integer
*, integer *);
logical tryrac;
/* -- LAPACK computational routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DSTEGR computes selected eigenvalues and, optionally, eigenvectors */
/* of a real symmetric tridiagonal matrix T. Any such unreduced matrix has */
/* a well defined set of pairwise different real eigenvalues, the corresponding */
/* real eigenvectors are pairwise orthogonal. */
/* The spectrum may be computed either completely or partially by specifying */
/* either an interval (VL,VU] or a range of indices IL:IU for the desired */
/* eigenvalues. */
/* DSTEGR is a compatability wrapper around the improved DSTEMR routine. */
/* See DSTEMR for further details. */
/* One important change is that the ABSTOL parameter no longer provides any */
/* benefit and hence is no longer used. */
/* Note : DSTEGR and DSTEMR work only on machines which follow */
/* IEEE-754 floating-point standard in their handling of infinities and */
/* NaNs. Normal execution may create these exceptiona values and hence */
/* may abort due to a floating point exception in environments which */
/* do not conform to the IEEE-754 standard. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* RANGE (input) CHARACTER*1 */
/* = 'A': all eigenvalues will be found. */
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* will be found. */
/* = 'I': the IL-th through IU-th eigenvalues will be found. */
/* N (input) INTEGER */
/* The order of the matrix. N >= 0. */
/* D (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the N diagonal elements of the tridiagonal matrix */
/* T. On exit, D is overwritten. */
/* E (input/output) DOUBLE PRECISION array, dimension (N) */
/* On entry, the (N-1) subdiagonal elements of the tridiagonal */
/* matrix T in elements 1 to N-1 of E. E(N) need not be set on */
/* input, but is used internally as workspace. */
/* On exit, E is overwritten. */
/* VL (input) DOUBLE PRECISION */
/* VU (input) DOUBLE PRECISION */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* ABSTOL (input) DOUBLE PRECISION */
/* Unused. Was the absolute error tolerance for the */
/* eigenvalues/eigenvectors in previous versions. */
/* M (output) INTEGER */
/* The total number of eigenvalues found. 0 <= M <= N. */
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* W (output) DOUBLE PRECISION array, dimension (N) */
/* The first M elements contain the selected eigenvalues in */
/* ascending order. */
/* Z (output) DOUBLE PRECISION array, dimension (LDZ, max(1,M) ) */
/* If JOBZ = 'V', and if INFO = 0, then the first M columns of Z */
/* contain the orthonormal eigenvectors of the matrix T */
/* corresponding to the selected eigenvalues, with the i-th */
/* column of Z holding the eigenvector associated with W(i). */
/* If JOBZ = 'N', then Z is not referenced. */
/* Note: the user must ensure that at least max(1,M) columns are */
/* supplied in the array Z; if RANGE = 'V', the exact value of M */
/* is not known in advance and an upper bound must be used. */
/* Supplying N columns is always safe. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', then LDZ >= max(1,N). */
/* ISUPPZ (output) INTEGER ARRAY, dimension ( 2*max(1,M) ) */
/* The support of the eigenvectors in Z, i.e., the indices */
/* indicating the nonzero elements in Z. The i-th computed eigenvector */
/* is nonzero only in elements ISUPPZ( 2*i-1 ) through */
/* ISUPPZ( 2*i ). This is relevant in the case when the matrix */
/* is split. ISUPPZ is only accessed when JOBZ is 'V' and N > 0. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (LWORK) */
/* On exit, if INFO = 0, WORK(1) returns the optimal */
/* (and minimal) LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,18*N) */
/* if JOBZ = 'V', and LWORK >= max(1,12*N) if JOBZ = 'N'. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* IWORK (workspace/output) INTEGER array, dimension (LIWORK) */
/* On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK. */
/* LIWORK (input) INTEGER */
/* The dimension of the array IWORK. LIWORK >= max(1,10*N) */
/* if the eigenvectors are desired, and LIWORK >= max(1,8*N) */
/* if only the eigenvalues are to be computed. */
/* If LIWORK = -1, then a workspace query is assumed; the */
/* routine only calculates the optimal size of the IWORK array, */
/* returns this value as the first entry of the IWORK array, and */
/* no error message related to LIWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* On exit, INFO */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = 1X, internal error in DLARRE, */
/* if INFO = 2X, internal error in DLARRV. */
/* Here, the digit X = ABS( IINFO ) < 10, where IINFO is */
/* the nonzero error code returned by DLARRE or */
/* DLARRV, respectively. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Inderjit Dhillon, IBM Almaden, USA */
/* Osni Marques, LBNL/NERSC, USA */
/* Christof Voemel, LBNL/NERSC, USA */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--d__;
--e;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--isuppz;
--work;
--iwork;
/* Function Body */
*info = 0;
tryrac = FALSE_;
dstemr_(jobz, range, n, &d__[1], &e[1], vl, vu, il, iu, m, &w[1], &z__[
z_offset], ldz, n, &isuppz[1], &tryrac, &work[1], lwork, &iwork[1]
, liwork, info);
/* End of DSTEGR */
return 0;
} /* dstegr_ */