/* dptsvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int dptsvx_(char *fact, integer *n, integer *nrhs,
doublereal *d__, doublereal *e, doublereal *df, doublereal *ef,
doublereal *b, integer *ldb, doublereal *x, integer *ldx, doublereal *
rcond, doublereal *ferr, doublereal *berr, doublereal *work, integer *
info)
{
/* System generated locals */
integer b_dim1, b_offset, x_dim1, x_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
doublereal anorm;
extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *,
doublereal *, integer *);
extern doublereal dlamch_(char *);
logical nofact;
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
xerbla_(char *, integer *);
extern doublereal dlanst_(char *, integer *, doublereal *, doublereal *);
extern /* Subroutine */ int dptcon_(integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *), dptrfs_(
integer *, integer *, doublereal *, doublereal *, doublereal *,
doublereal *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, doublereal *, integer *), dpttrf_(
integer *, doublereal *, doublereal *, integer *), dpttrs_(
integer *, integer *, doublereal *, doublereal *, doublereal *,
integer *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DPTSVX uses the factorization A = L*D*L**T to compute the solution */
/* to a real system of linear equations A*X = B, where A is an N-by-N */
/* symmetric positive definite tridiagonal matrix and X and B are */
/* N-by-NRHS matrices. */
/* Error bounds on the solution and a condition estimate are also */
/* provided. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'N', the matrix A is factored as A = L*D*L**T, where L */
/* is a unit lower bidiagonal matrix and D is diagonal. The */
/* factorization can also be regarded as having the form */
/* A = U**T*D*U. */
/* 2. If the leading i-by-i principal minor is not positive definite, */
/* then the routine returns with INFO = i. Otherwise, the factored */
/* form of A is used to estimate the condition number of the matrix */
/* A. If the reciprocal of the condition number is less than machine */
/* precision, INFO = N+1 is returned as a warning, but the routine */
/* still goes on to solve for X and compute error bounds as */
/* described below. */
/* 3. The system of equations is solved for X using the factored form */
/* of A. */
/* 4. Iterative refinement is applied to improve the computed solution */
/* matrix and calculate error bounds and backward error estimates */
/* for it. */
/* Arguments */
/* ========= */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of A has been */
/* supplied on entry. */
/* = 'F': On entry, DF and EF contain the factored form of A. */
/* D, E, DF, and EF will not be modified. */
/* = 'N': The matrix A will be copied to DF and EF and */
/* factored. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* D (input) DOUBLE PRECISION array, dimension (N) */
/* The n diagonal elements of the tridiagonal matrix A. */
/* E (input) DOUBLE PRECISION array, dimension (N-1) */
/* The (n-1) subdiagonal elements of the tridiagonal matrix A. */
/* DF (input or output) DOUBLE PRECISION array, dimension (N) */
/* If FACT = 'F', then DF is an input argument and on entry */
/* contains the n diagonal elements of the diagonal matrix D */
/* from the L*D*L**T factorization of A. */
/* If FACT = 'N', then DF is an output argument and on exit */
/* contains the n diagonal elements of the diagonal matrix D */
/* from the L*D*L**T factorization of A. */
/* EF (input or output) DOUBLE PRECISION array, dimension (N-1) */
/* If FACT = 'F', then EF is an input argument and on entry */
/* contains the (n-1) subdiagonal elements of the unit */
/* bidiagonal factor L from the L*D*L**T factorization of A. */
/* If FACT = 'N', then EF is an output argument and on exit */
/* contains the (n-1) subdiagonal elements of the unit */
/* bidiagonal factor L from the L*D*L**T factorization of A. */
/* B (input) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* The N-by-NRHS right hand side matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/* If INFO = 0 of INFO = N+1, the N-by-NRHS solution matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) DOUBLE PRECISION */
/* The reciprocal condition number of the matrix A. If RCOND */
/* is less than the machine precision (in particular, if */
/* RCOND = 0), the matrix is singular to working precision. */
/* This condition is indicated by a return code of INFO > 0. */
/* FERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The forward error bound for each solution vector */
/* X(j) (the j-th column of the solution matrix X). */
/* If XTRUE is the true solution corresponding to X(j), FERR(j) */
/* is an estimated upper bound for the magnitude of the largest */
/* element in (X(j) - XTRUE) divided by the magnitude of the */
/* largest element in X(j). */
/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* The componentwise relative backward error of each solution */
/* vector X(j) (i.e., the smallest relative change in any */
/* element of A or B that makes X(j) an exact solution). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is */
/* <= N: the leading minor of order i of A is */
/* not positive definite, so the factorization */
/* could not be completed, and the solution has not */
/* been computed. RCOND = 0 is returned. */
/* = N+1: U is nonsingular, but RCOND is less than machine */
/* precision, meaning that the matrix is singular */
/* to working precision. Nevertheless, the */
/* solution and error bounds are computed because */
/* there are a number of situations where the */
/* computed solution can be more accurate than the */
/* value of RCOND would suggest. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
--df;
--ef;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--ferr;
--berr;
--work;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
if (! nofact && ! lsame_(fact, "F")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*ldb < max(1,*n)) {
*info = -9;
} else if (*ldx < max(1,*n)) {
*info = -11;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DPTSVX", &i__1);
return 0;
}
if (nofact) {
/* Compute the L*D*L' (or U'*D*U) factorization of A. */
dcopy_(n, &d__[1], &c__1, &df[1], &c__1);
if (*n > 1) {
i__1 = *n - 1;
dcopy_(&i__1, &e[1], &c__1, &ef[1], &c__1);
}
dpttrf_(n, &df[1], &ef[1], info);
/* Return if INFO is non-zero. */
if (*info > 0) {
*rcond = 0.;
return 0;
}
}
/* Compute the norm of the matrix A. */
anorm = dlanst_("1", n, &d__[1], &e[1]);
/* Compute the reciprocal of the condition number of A. */
dptcon_(n, &df[1], &ef[1], &anorm, rcond, &work[1], info);
/* Compute the solution vectors X. */
dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
dpttrs_(n, nrhs, &df[1], &ef[1], &x[x_offset], ldx, info);
/* Use iterative refinement to improve the computed solutions and */
/* compute error bounds and backward error estimates for them. */
dptrfs_(n, nrhs, &d__[1], &e[1], &df[1], &ef[1], &b[b_offset], ldb, &x[
x_offset], ldx, &ferr[1], &berr[1], &work[1], info);
/* Set INFO = N+1 if the matrix is singular to working precision. */
if (*rcond < dlamch_("Epsilon")) {
*info = *n + 1;
}
return 0;
/* End of DPTSVX */
} /* dptsvx_ */