/* dpptri.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static doublereal c_b8 = 1.;
static integer c__1 = 1;
/* Subroutine */ int dpptri_(char *uplo, integer *n, doublereal *ap, integer *
info)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer j, jc, jj;
doublereal ajj;
integer jjn;
extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *,
integer *);
extern /* Subroutine */ int dspr_(char *, integer *, doublereal *,
doublereal *, integer *, doublereal *), dscal_(integer *,
doublereal *, doublereal *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int dtpmv_(char *, char *, char *, integer *,
doublereal *, doublereal *, integer *);
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *), dtptri_(
char *, char *, integer *, doublereal *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DPPTRI computes the inverse of a real symmetric positive definite */
/* matrix A using the Cholesky factorization A = U**T*U or A = L*L**T */
/* computed by DPPTRF. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangular factor is stored in AP; */
/* = 'L': Lower triangular factor is stored in AP. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* On entry, the triangular factor U or L from the Cholesky */
/* factorization A = U**T*U or A = L*L**T, packed columnwise as */
/* a linear array. The j-th column of U or L is stored in the */
/* array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n. */
/* On exit, the upper or lower triangle of the (symmetric) */
/* inverse of A, overwriting the input factor U or L. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, the (i,i) element of the factor U or L is */
/* zero, and the inverse could not be computed. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DPPTRI", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Invert the triangular Cholesky factor U or L. */
dtptri_(uplo, "Non-unit", n, &ap[1], info);
if (*info > 0) {
return 0;
}
if (upper) {
/* Compute the product inv(U) * inv(U)'. */
jj = 0;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
jc = jj + 1;
jj += j;
if (j > 1) {
i__2 = j - 1;
dspr_("Upper", &i__2, &c_b8, &ap[jc], &c__1, &ap[1]);
}
ajj = ap[jj];
dscal_(&j, &ajj, &ap[jc], &c__1);
/* L10: */
}
} else {
/* Compute the product inv(L)' * inv(L). */
jj = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
jjn = jj + *n - j + 1;
i__2 = *n - j + 1;
ap[jj] = ddot_(&i__2, &ap[jj], &c__1, &ap[jj], &c__1);
if (j < *n) {
i__2 = *n - j;
dtpmv_("Lower", "Transpose", "Non-unit", &i__2, &ap[jjn], &ap[
jj + 1], &c__1);
}
jj = jjn;
/* L20: */
}
}
return 0;
/* End of DPPTRI */
} /* dpptri_ */