/* dorgrq.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static integer c__3 = 3;
static integer c__2 = 2;
/* Subroutine */ int dorgrq_(integer *m, integer *n, integer *k, doublereal *
a, integer *lda, doublereal *tau, doublereal *work, integer *lwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, l, ib, nb, ii, kk, nx, iws, nbmin, iinfo;
extern /* Subroutine */ int dorgr2_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *),
dlarfb_(char *, char *, char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *), dlarft_(char *, char *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer ldwork, lwkopt;
logical lquery;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DORGRQ generates an M-by-N real matrix Q with orthonormal rows, */
/* which is defined as the last M rows of a product of K elementary */
/* reflectors of order N */
/* Q = H(1) H(2) . . . H(k) */
/* as returned by DGERQF. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix Q. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix Q. N >= M. */
/* K (input) INTEGER */
/* The number of elementary reflectors whose product defines the */
/* matrix Q. M >= K >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the (m-k+i)-th row must contain the vector which */
/* defines the elementary reflector H(i), for i = 1,2,...,k, as */
/* returned by DGERQF in the last k rows of its array argument */
/* A. */
/* On exit, the M-by-N matrix Q. */
/* LDA (input) INTEGER */
/* The first dimension of the array A. LDA >= max(1,M). */
/* TAU (input) DOUBLE PRECISION array, dimension (K) */
/* TAU(i) must contain the scalar factor of the elementary */
/* reflector H(i), as returned by DGERQF. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,M). */
/* For optimum performance LWORK >= M*NB, where NB is the */
/* optimal blocksize. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument has an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (*m < 0) {
*info = -1;
} else if (*n < *m) {
*info = -2;
} else if (*k < 0 || *k > *m) {
*info = -3;
} else if (*lda < max(1,*m)) {
*info = -5;
}
if (*info == 0) {
if (*m <= 0) {
lwkopt = 1;
} else {
nb = ilaenv_(&c__1, "DORGRQ", " ", m, n, k, &c_n1);
lwkopt = *m * nb;
}
work[1] = (doublereal) lwkopt;
if (*lwork < max(1,*m) && ! lquery) {
*info = -8;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DORGRQ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*m <= 0) {
return 0;
}
nbmin = 2;
nx = 0;
iws = *m;
if (nb > 1 && nb < *k) {
/* Determine when to cross over from blocked to unblocked code. */
/* Computing MAX */
i__1 = 0, i__2 = ilaenv_(&c__3, "DORGRQ", " ", m, n, k, &c_n1);
nx = max(i__1,i__2);
if (nx < *k) {
/* Determine if workspace is large enough for blocked code. */
ldwork = *m;
iws = ldwork * nb;
if (*lwork < iws) {
/* Not enough workspace to use optimal NB: reduce NB and */
/* determine the minimum value of NB. */
nb = *lwork / ldwork;
/* Computing MAX */
i__1 = 2, i__2 = ilaenv_(&c__2, "DORGRQ", " ", m, n, k, &c_n1);
nbmin = max(i__1,i__2);
}
}
}
if (nb >= nbmin && nb < *k && nx < *k) {
/* Use blocked code after the first block. */
/* The last kk rows are handled by the block method. */
/* Computing MIN */
i__1 = *k, i__2 = (*k - nx + nb - 1) / nb * nb;
kk = min(i__1,i__2);
/* Set A(1:m-kk,n-kk+1:n) to zero. */
i__1 = *n;
for (j = *n - kk + 1; j <= i__1; ++j) {
i__2 = *m - kk;
for (i__ = 1; i__ <= i__2; ++i__) {
a[i__ + j * a_dim1] = 0.;
/* L10: */
}
/* L20: */
}
} else {
kk = 0;
}
/* Use unblocked code for the first or only block. */
i__1 = *m - kk;
i__2 = *n - kk;
i__3 = *k - kk;
dorgr2_(&i__1, &i__2, &i__3, &a[a_offset], lda, &tau[1], &work[1], &iinfo)
;
if (kk > 0) {
/* Use blocked code */
i__1 = *k;
i__2 = nb;
for (i__ = *k - kk + 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ +=
i__2) {
/* Computing MIN */
i__3 = nb, i__4 = *k - i__ + 1;
ib = min(i__3,i__4);
ii = *m - *k + i__;
if (ii > 1) {
/* Form the triangular factor of the block reflector */
/* H = H(i+ib-1) . . . H(i+1) H(i) */
i__3 = *n - *k + i__ + ib - 1;
dlarft_("Backward", "Rowwise", &i__3, &ib, &a[ii + a_dim1],
lda, &tau[i__], &work[1], &ldwork);
/* Apply H' to A(1:m-k+i-1,1:n-k+i+ib-1) from the right */
i__3 = ii - 1;
i__4 = *n - *k + i__ + ib - 1;
dlarfb_("Right", "Transpose", "Backward", "Rowwise", &i__3, &
i__4, &ib, &a[ii + a_dim1], lda, &work[1], &ldwork, &
a[a_offset], lda, &work[ib + 1], &ldwork);
}
/* Apply H' to columns 1:n-k+i+ib-1 of current block */
i__3 = *n - *k + i__ + ib - 1;
dorgr2_(&ib, &i__3, &ib, &a[ii + a_dim1], lda, &tau[i__], &work[1]
, &iinfo);
/* Set columns n-k+i+ib:n of current block to zero */
i__3 = *n;
for (l = *n - *k + i__ + ib; l <= i__3; ++l) {
i__4 = ii + ib - 1;
for (j = ii; j <= i__4; ++j) {
a[j + l * a_dim1] = 0.;
/* L30: */
}
/* L40: */
}
/* L50: */
}
}
work[1] = (doublereal) iws;
return 0;
/* End of DORGRQ */
} /* dorgrq_ */