aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/dlatdf.c
blob: 263fc87dd94857dad8315d7a987447c6f7dd5b1e (plain) (tree)













































































































































































































































































































                                                                               
/* dlatdf.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b23 = 1.;
static doublereal c_b37 = -1.;

/* Subroutine */ int dlatdf_(integer *ijob, integer *n, doublereal *z__, 
	integer *ldz, doublereal *rhs, doublereal *rdsum, doublereal *rdscal, 
	integer *ipiv, integer *jpiv)
{
    /* System generated locals */
    integer z_dim1, z_offset, i__1, i__2;
    doublereal d__1;

    /* Builtin functions */
    double sqrt(doublereal);

    /* Local variables */
    integer i__, j, k;
    doublereal bm, bp, xm[8], xp[8];
    extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
	    integer *);
    integer info;
    doublereal temp, work[32];
    extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *, 
	    integer *);
    extern doublereal dasum_(integer *, doublereal *, integer *);
    doublereal pmone;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *), daxpy_(integer *, doublereal *, 
	    doublereal *, integer *, doublereal *, integer *);
    doublereal sminu;
    integer iwork[8];
    doublereal splus;
    extern /* Subroutine */ int dgesc2_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, integer *, doublereal *), dgecon_(char *, 
	     integer *, doublereal *, integer *, doublereal *, doublereal *, 
	    doublereal *, integer *, integer *), dlassq_(integer *, 
	    doublereal *, integer *, doublereal *, doublereal *), dlaswp_(
	    integer *, doublereal *, integer *, integer *, integer *, integer 
	    *, integer *);


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLATDF uses the LU factorization of the n-by-n matrix Z computed by */
/*  DGETC2 and computes a contribution to the reciprocal Dif-estimate */
/*  by solving Z * x = b for x, and choosing the r.h.s. b such that */
/*  the norm of x is as large as possible. On entry RHS = b holds the */
/*  contribution from earlier solved sub-systems, and on return RHS = x. */

/*  The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q, */
/*  where P and Q are permutation matrices. L is lower triangular with */
/*  unit diagonal elements and U is upper triangular. */

/*  Arguments */
/*  ========= */

/*  IJOB    (input) INTEGER */
/*          IJOB = 2: First compute an approximative null-vector e */
/*              of Z using DGECON, e is normalized and solve for */
/*              Zx = +-e - f with the sign giving the greater value */
/*              of 2-norm(x). About 5 times as expensive as Default. */
/*          IJOB .ne. 2: Local look ahead strategy where all entries of */
/*              the r.h.s. b is choosen as either +1 or -1 (Default). */

/*  N       (input) INTEGER */
/*          The number of columns of the matrix Z. */

/*  Z       (input) DOUBLE PRECISION array, dimension (LDZ, N) */
/*          On entry, the LU part of the factorization of the n-by-n */
/*          matrix Z computed by DGETC2:  Z = P * L * U * Q */

/*  LDZ     (input) INTEGER */
/*          The leading dimension of the array Z.  LDA >= max(1, N). */

/*  RHS     (input/output) DOUBLE PRECISION array, dimension N. */
/*          On entry, RHS contains contributions from other subsystems. */
/*          On exit, RHS contains the solution of the subsystem with */
/*          entries acoording to the value of IJOB (see above). */

/*  RDSUM   (input/output) DOUBLE PRECISION */
/*          On entry, the sum of squares of computed contributions to */
/*          the Dif-estimate under computation by DTGSYL, where the */
/*          scaling factor RDSCAL (see below) has been factored out. */
/*          On exit, the corresponding sum of squares updated with the */
/*          contributions from the current sub-system. */
/*          If TRANS = 'T' RDSUM is not touched. */
/*          NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL. */

/*  RDSCAL  (input/output) DOUBLE PRECISION */
/*          On entry, scaling factor used to prevent overflow in RDSUM. */
/*          On exit, RDSCAL is updated w.r.t. the current contributions */
/*          in RDSUM. */
/*          If TRANS = 'T', RDSCAL is not touched. */
/*          NOTE: RDSCAL only makes sense when DTGSY2 is called by */
/*                DTGSYL. */

/*  IPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= i <= N, row i of the */
/*          matrix has been interchanged with row IPIV(i). */

/*  JPIV    (input) INTEGER array, dimension (N). */
/*          The pivot indices; for 1 <= j <= N, column j of the */
/*          matrix has been interchanged with column JPIV(j). */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
/*     Umea University, S-901 87 Umea, Sweden. */

/*  This routine is a further developed implementation of algorithm */
/*  BSOLVE in [1] using complete pivoting in the LU factorization. */

/*  [1] Bo Kagstrom and Lars Westin, */
/*      Generalized Schur Methods with Condition Estimators for */
/*      Solving the Generalized Sylvester Equation, IEEE Transactions */
/*      on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751. */

/*  [2] Peter Poromaa, */
/*      On Efficient and Robust Estimators for the Separation */
/*      between two Regular Matrix Pairs with Applications in */
/*      Condition Estimation. Report IMINF-95.05, Departement of */
/*      Computing Science, Umea University, S-901 87 Umea, Sweden, 1995. */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */
/*     .. */
/*     .. Local Arrays .. */
/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

    /* Parameter adjustments */
    z_dim1 = *ldz;
    z_offset = 1 + z_dim1;
    z__ -= z_offset;
    --rhs;
    --ipiv;
    --jpiv;

    /* Function Body */
    if (*ijob != 2) {

/*        Apply permutations IPIV to RHS */

	i__1 = *n - 1;
	dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &ipiv[1], &c__1);

/*        Solve for L-part choosing RHS either to +1 or -1. */

	pmone = -1.;

	i__1 = *n - 1;
	for (j = 1; j <= i__1; ++j) {
	    bp = rhs[j] + 1.;
	    bm = rhs[j] - 1.;
	    splus = 1.;

/*           Look-ahead for L-part RHS(1:N-1) = + or -1, SPLUS and */
/*           SMIN computed more efficiently than in BSOLVE [1]. */

	    i__2 = *n - j;
	    splus += ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &z__[j + 1 
		    + j * z_dim1], &c__1);
	    i__2 = *n - j;
	    sminu = ddot_(&i__2, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
		     &c__1);
	    splus *= rhs[j];
	    if (splus > sminu) {
		rhs[j] = bp;
	    } else if (sminu > splus) {
		rhs[j] = bm;
	    } else {

/*              In this case the updating sums are equal and we can */
/*              choose RHS(J) +1 or -1. The first time this happens */
/*              we choose -1, thereafter +1. This is a simple way to */
/*              get good estimates of matrices like Byers well-known */
/*              example (see [1]). (Not done in BSOLVE.) */

		rhs[j] += pmone;
		pmone = 1.;
	    }

/*           Compute the remaining r.h.s. */

	    temp = -rhs[j];
	    i__2 = *n - j;
	    daxpy_(&i__2, &temp, &z__[j + 1 + j * z_dim1], &c__1, &rhs[j + 1], 
		     &c__1);

/* L10: */
	}

/*        Solve for U-part, look-ahead for RHS(N) = +-1. This is not done */
/*        in BSOLVE and will hopefully give us a better estimate because */
/*        any ill-conditioning of the original matrix is transfered to U */
/*        and not to L. U(N, N) is an approximation to sigma_min(LU). */

	i__1 = *n - 1;
	dcopy_(&i__1, &rhs[1], &c__1, xp, &c__1);
	xp[*n - 1] = rhs[*n] + 1.;
	rhs[*n] += -1.;
	splus = 0.;
	sminu = 0.;
	for (i__ = *n; i__ >= 1; --i__) {
	    temp = 1. / z__[i__ + i__ * z_dim1];
	    xp[i__ - 1] *= temp;
	    rhs[i__] *= temp;
	    i__1 = *n;
	    for (k = i__ + 1; k <= i__1; ++k) {
		xp[i__ - 1] -= xp[k - 1] * (z__[i__ + k * z_dim1] * temp);
		rhs[i__] -= rhs[k] * (z__[i__ + k * z_dim1] * temp);
/* L20: */
	    }
	    splus += (d__1 = xp[i__ - 1], abs(d__1));
	    sminu += (d__1 = rhs[i__], abs(d__1));
/* L30: */
	}
	if (splus > sminu) {
	    dcopy_(n, xp, &c__1, &rhs[1], &c__1);
	}

/*        Apply the permutations JPIV to the computed solution (RHS) */

	i__1 = *n - 1;
	dlaswp_(&c__1, &rhs[1], ldz, &c__1, &i__1, &jpiv[1], &c_n1);

/*        Compute the sum of squares */

	dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);

    } else {

/*        IJOB = 2, Compute approximate nullvector XM of Z */

	dgecon_("I", n, &z__[z_offset], ldz, &c_b23, &temp, work, iwork, &
		info);
	dcopy_(n, &work[*n], &c__1, xm, &c__1);

/*        Compute RHS */

	i__1 = *n - 1;
	dlaswp_(&c__1, xm, ldz, &c__1, &i__1, &ipiv[1], &c_n1);
	temp = 1. / sqrt(ddot_(n, xm, &c__1, xm, &c__1));
	dscal_(n, &temp, xm, &c__1);
	dcopy_(n, xm, &c__1, xp, &c__1);
	daxpy_(n, &c_b23, &rhs[1], &c__1, xp, &c__1);
	daxpy_(n, &c_b37, xm, &c__1, &rhs[1], &c__1);
	dgesc2_(n, &z__[z_offset], ldz, &rhs[1], &ipiv[1], &jpiv[1], &temp);
	dgesc2_(n, &z__[z_offset], ldz, xp, &ipiv[1], &jpiv[1], &temp);
	if (dasum_(n, xp, &c__1) > dasum_(n, &rhs[1], &c__1)) {
	    dcopy_(n, xp, &c__1, &rhs[1], &c__1);
	}

/*        Compute the sum of squares */

	dlassq_(n, &rhs[1], &c__1, rdscal, rdsum);

    }

    return 0;

/*     End of DLATDF */

} /* dlatdf_ */