/* dlat2s.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dlat2s_(char *uplo, integer *n, doublereal *a, integer *
lda, real *sa, integer *ldsa, integer *info)
{
/* System generated locals */
integer sa_dim1, sa_offset, a_dim1, a_offset, i__1, i__2;
/* Local variables */
integer i__, j;
doublereal rmax;
extern logical lsame_(char *, char *);
logical upper;
extern doublereal slamch_(char *);
/* -- LAPACK PROTOTYPE auxiliary routine (version 3.1.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* May 2007 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLAT2S converts a DOUBLE PRECISION triangular matrix, SA, to a SINGLE */
/* PRECISION triangular matrix, A. */
/* RMAX is the overflow for the SINGLE PRECISION arithmetic */
/* DLAS2S checks that all the entries of A are between -RMAX and */
/* RMAX. If not the convertion is aborted and a flag is raised. */
/* This is an auxiliary routine so there is no argument checking. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': A is upper triangular; */
/* = 'L': A is lower triangular. */
/* N (input) INTEGER */
/* The number of rows and columns of the matrix A. N >= 0. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the N-by-N triangular coefficient matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* SA (output) REAL array, dimension (LDSA,N) */
/* Only the UPLO part of SA is referenced. On exit, if INFO=0, */
/* the N-by-N coefficient matrix SA; if INFO>0, the content of */
/* the UPLO part of SA is unspecified. */
/* LDSA (input) INTEGER */
/* The leading dimension of the array SA. LDSA >= max(1,M). */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* = 1: an entry of the matrix A is greater than the SINGLE */
/* PRECISION overflow threshold, in this case, the content */
/* of the UPLO part of SA in exit is unspecified. */
/* ========= */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
sa_dim1 = *ldsa;
sa_offset = 1 + sa_dim1;
sa -= sa_offset;
/* Function Body */
rmax = slamch_("O");
upper = lsame_(uplo, "U");
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax)
{
*info = 1;
goto L50;
}
sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1];
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
if (a[i__ + j * a_dim1] < -rmax || a[i__ + j * a_dim1] > rmax)
{
*info = 1;
goto L50;
}
sa[i__ + j * sa_dim1] = a[i__ + j * a_dim1];
/* L30: */
}
/* L40: */
}
}
L50:
return 0;
/* End of DLAT2S */
} /* dlat2s_ */