aboutsummaryrefslogblamecommitdiffstats
path: root/contrib/libs/clapack/dlasd7.c
blob: ea4ca056bf9b893b7fcb833cc2f36ccc2d43467a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518




































































































































































































































































































































































































































































































































                                                                               
/* dlasd7.f -- translated by f2c (version 20061008).
   You must link the resulting object file with libf2c:
	on Microsoft Windows system, link with libf2c.lib;
	on Linux or Unix systems, link with .../path/to/libf2c.a -lm
	or, if you install libf2c.a in a standard place, with -lf2c -lm
	-- in that order, at the end of the command line, as in
		cc *.o -lf2c -lm
	Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,

		http://www.netlib.org/f2c/libf2c.zip
*/

#include "f2c.h"
#include "blaswrap.h"

/* Table of constant values */

static integer c__1 = 1;

/* Subroutine */ int dlasd7_(integer *icompq, integer *nl, integer *nr, 
	integer *sqre, integer *k, doublereal *d__, doublereal *z__, 
	doublereal *zw, doublereal *vf, doublereal *vfw, doublereal *vl, 
	doublereal *vlw, doublereal *alpha, doublereal *beta, doublereal *
	dsigma, integer *idx, integer *idxp, integer *idxq, integer *perm, 
	integer *givptr, integer *givcol, integer *ldgcol, doublereal *givnum, 
	 integer *ldgnum, doublereal *c__, doublereal *s, integer *info)
{
    /* System generated locals */
    integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
    doublereal d__1, d__2;

    /* Local variables */
    integer i__, j, m, n, k2;
    doublereal z1;
    integer jp;
    doublereal eps, tau, tol;
    integer nlp1, nlp2, idxi, idxj;
    extern /* Subroutine */ int drot_(integer *, doublereal *, integer *, 
	    doublereal *, integer *, doublereal *, doublereal *);
    integer idxjp;
    extern /* Subroutine */ int dcopy_(integer *, doublereal *, integer *, 
	    doublereal *, integer *);
    integer jprev;
    extern doublereal dlapy2_(doublereal *, doublereal *), dlamch_(char *);
    extern /* Subroutine */ int dlamrg_(integer *, integer *, doublereal *, 
	    integer *, integer *, integer *), xerbla_(char *, integer *);
    doublereal hlftol;


/*  -- LAPACK auxiliary routine (version 3.2) -- */
/*     Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/*     November 2006 */

/*     .. Scalar Arguments .. */
/*     .. */
/*     .. Array Arguments .. */
/*     .. */

/*  Purpose */
/*  ======= */

/*  DLASD7 merges the two sets of singular values together into a single */
/*  sorted set. Then it tries to deflate the size of the problem. There */
/*  are two ways in which deflation can occur:  when two or more singular */
/*  values are close together or if there is a tiny entry in the Z */
/*  vector. For each such occurrence the order of the related */
/*  secular equation problem is reduced by one. */

/*  DLASD7 is called from DLASD6. */

/*  Arguments */
/*  ========= */

/*  ICOMPQ  (input) INTEGER */
/*          Specifies whether singular vectors are to be computed */
/*          in compact form, as follows: */
/*          = 0: Compute singular values only. */
/*          = 1: Compute singular vectors of upper */
/*               bidiagonal matrix in compact form. */

/*  NL     (input) INTEGER */
/*         The row dimension of the upper block. NL >= 1. */

/*  NR     (input) INTEGER */
/*         The row dimension of the lower block. NR >= 1. */

/*  SQRE   (input) INTEGER */
/*         = 0: the lower block is an NR-by-NR square matrix. */
/*         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */

/*         The bidiagonal matrix has */
/*         N = NL + NR + 1 rows and */
/*         M = N + SQRE >= N columns. */

/*  K      (output) INTEGER */
/*         Contains the dimension of the non-deflated matrix, this is */
/*         the order of the related secular equation. 1 <= K <=N. */

/*  D      (input/output) DOUBLE PRECISION array, dimension ( N ) */
/*         On entry D contains the singular values of the two submatrices */
/*         to be combined. On exit D contains the trailing (N-K) updated */
/*         singular values (those which were deflated) sorted into */
/*         increasing order. */

/*  Z      (output) DOUBLE PRECISION array, dimension ( M ) */
/*         On exit Z contains the updating row vector in the secular */
/*         equation. */

/*  ZW     (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for Z. */

/*  VF     (input/output) DOUBLE PRECISION array, dimension ( M ) */
/*         On entry, VF(1:NL+1) contains the first components of all */
/*         right singular vectors of the upper block; and VF(NL+2:M) */
/*         contains the first components of all right singular vectors */
/*         of the lower block. On exit, VF contains the first components */
/*         of all right singular vectors of the bidiagonal matrix. */

/*  VFW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for VF. */

/*  VL     (input/output) DOUBLE PRECISION array, dimension ( M ) */
/*         On entry, VL(1:NL+1) contains the  last components of all */
/*         right singular vectors of the upper block; and VL(NL+2:M) */
/*         contains the last components of all right singular vectors */
/*         of the lower block. On exit, VL contains the last components */
/*         of all right singular vectors of the bidiagonal matrix. */

/*  VLW    (workspace) DOUBLE PRECISION array, dimension ( M ) */
/*         Workspace for VL. */

/*  ALPHA  (input) DOUBLE PRECISION */
/*         Contains the diagonal element associated with the added row. */

/*  BETA   (input) DOUBLE PRECISION */
/*         Contains the off-diagonal element associated with the added */
/*         row. */

/*  DSIGMA (output) DOUBLE PRECISION array, dimension ( N ) */
/*         Contains a copy of the diagonal elements (K-1 singular values */
/*         and one zero) in the secular equation. */

/*  IDX    (workspace) INTEGER array, dimension ( N ) */
/*         This will contain the permutation used to sort the contents of */
/*         D into ascending order. */

/*  IDXP   (workspace) INTEGER array, dimension ( N ) */
/*         This will contain the permutation used to place deflated */
/*         values of D at the end of the array. On output IDXP(2:K) */
/*         points to the nondeflated D-values and IDXP(K+1:N) */
/*         points to the deflated singular values. */

/*  IDXQ   (input) INTEGER array, dimension ( N ) */
/*         This contains the permutation which separately sorts the two */
/*         sub-problems in D into ascending order.  Note that entries in */
/*         the first half of this permutation must first be moved one */
/*         position backward; and entries in the second half */
/*         must first have NL+1 added to their values. */

/*  PERM   (output) INTEGER array, dimension ( N ) */
/*         The permutations (from deflation and sorting) to be applied */
/*         to each singular block. Not referenced if ICOMPQ = 0. */

/*  GIVPTR (output) INTEGER */
/*         The number of Givens rotations which took place in this */
/*         subproblem. Not referenced if ICOMPQ = 0. */

/*  GIVCOL (output) INTEGER array, dimension ( LDGCOL, 2 ) */
/*         Each pair of numbers indicates a pair of columns to take place */
/*         in a Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGCOL (input) INTEGER */
/*         The leading dimension of GIVCOL, must be at least N. */

/*  GIVNUM (output) DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
/*         Each number indicates the C or S value to be used in the */
/*         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */

/*  LDGNUM (input) INTEGER */
/*         The leading dimension of GIVNUM, must be at least N. */

/*  C      (output) DOUBLE PRECISION */
/*         C contains garbage if SQRE =0 and the C-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  S      (output) DOUBLE PRECISION */
/*         S contains garbage if SQRE =0 and the S-value of a Givens */
/*         rotation related to the right null space if SQRE = 1. */

/*  INFO   (output) INTEGER */
/*         = 0:  successful exit. */
/*         < 0:  if INFO = -i, the i-th argument had an illegal value. */

/*  Further Details */
/*  =============== */

/*  Based on contributions by */
/*     Ming Gu and Huan Ren, Computer Science Division, University of */
/*     California at Berkeley, USA */

/*  ===================================================================== */

/*     .. Parameters .. */
/*     .. */
/*     .. Local Scalars .. */

/*     .. */
/*     .. External Subroutines .. */
/*     .. */
/*     .. External Functions .. */
/*     .. */
/*     .. Intrinsic Functions .. */
/*     .. */
/*     .. Executable Statements .. */

/*     Test the input parameters. */

    /* Parameter adjustments */
    --d__;
    --z__;
    --zw;
    --vf;
    --vfw;
    --vl;
    --vlw;
    --dsigma;
    --idx;
    --idxp;
    --idxq;
    --perm;
    givcol_dim1 = *ldgcol;
    givcol_offset = 1 + givcol_dim1;
    givcol -= givcol_offset;
    givnum_dim1 = *ldgnum;
    givnum_offset = 1 + givnum_dim1;
    givnum -= givnum_offset;

    /* Function Body */
    *info = 0;
    n = *nl + *nr + 1;
    m = n + *sqre;

    if (*icompq < 0 || *icompq > 1) {
	*info = -1;
    } else if (*nl < 1) {
	*info = -2;
    } else if (*nr < 1) {
	*info = -3;
    } else if (*sqre < 0 || *sqre > 1) {
	*info = -4;
    } else if (*ldgcol < n) {
	*info = -22;
    } else if (*ldgnum < n) {
	*info = -24;
    }
    if (*info != 0) {
	i__1 = -(*info);
	xerbla_("DLASD7", &i__1);
	return 0;
    }

    nlp1 = *nl + 1;
    nlp2 = *nl + 2;
    if (*icompq == 1) {
	*givptr = 0;
    }

/*     Generate the first part of the vector Z and move the singular */
/*     values in the first part of D one position backward. */

    z1 = *alpha * vl[nlp1];
    vl[nlp1] = 0.;
    tau = vf[nlp1];
    for (i__ = *nl; i__ >= 1; --i__) {
	z__[i__ + 1] = *alpha * vl[i__];
	vl[i__] = 0.;
	vf[i__ + 1] = vf[i__];
	d__[i__ + 1] = d__[i__];
	idxq[i__ + 1] = idxq[i__] + 1;
/* L10: */
    }
    vf[1] = tau;

/*     Generate the second part of the vector Z. */

    i__1 = m;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	z__[i__] = *beta * vf[i__];
	vf[i__] = 0.;
/* L20: */
    }

/*     Sort the singular values into increasing order */

    i__1 = n;
    for (i__ = nlp2; i__ <= i__1; ++i__) {
	idxq[i__] += nlp1;
/* L30: */
    }

/*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	dsigma[i__] = d__[idxq[i__]];
	zw[i__] = z__[idxq[i__]];
	vfw[i__] = vf[idxq[i__]];
	vlw[i__] = vl[idxq[i__]];
/* L40: */
    }

    dlamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);

    i__1 = n;
    for (i__ = 2; i__ <= i__1; ++i__) {
	idxi = idx[i__] + 1;
	d__[i__] = dsigma[idxi];
	z__[i__] = zw[idxi];
	vf[i__] = vfw[idxi];
	vl[i__] = vlw[idxi];
/* L50: */
    }

/*     Calculate the allowable deflation tolerence */

    eps = dlamch_("Epsilon");
/* Computing MAX */
    d__1 = abs(*alpha), d__2 = abs(*beta);
    tol = max(d__1,d__2);
/* Computing MAX */
    d__2 = (d__1 = d__[n], abs(d__1));
    tol = eps * 64. * max(d__2,tol);

/*     There are 2 kinds of deflation -- first a value in the z-vector */
/*     is small, second two (or more) singular values are very close */
/*     together (their difference is small). */

/*     If the value in the z-vector is small, we simply permute the */
/*     array so that the corresponding singular value is moved to the */
/*     end. */

/*     If two values in the D-vector are close, we perform a two-sided */
/*     rotation designed to make one of the corresponding z-vector */
/*     entries zero, and then permute the array so that the deflated */
/*     singular value is moved to the end. */

/*     If there are multiple singular values then the problem deflates. */
/*     Here the number of equal singular values are found.  As each equal */
/*     singular value is found, an elementary reflector is computed to */
/*     rotate the corresponding singular subspace so that the */
/*     corresponding components of Z are zero in this new basis. */

    *k = 1;
    k2 = n + 1;
    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	if ((d__1 = z__[j], abs(d__1)) <= tol) {

/*           Deflate due to small z component. */

	    --k2;
	    idxp[k2] = j;
	    if (j == n) {
		goto L100;
	    }
	} else {
	    jprev = j;
	    goto L70;
	}
/* L60: */
    }
L70:
    j = jprev;
L80:
    ++j;
    if (j > n) {
	goto L90;
    }
    if ((d__1 = z__[j], abs(d__1)) <= tol) {

/*        Deflate due to small z component. */

	--k2;
	idxp[k2] = j;
    } else {

/*        Check if singular values are close enough to allow deflation. */

	if ((d__1 = d__[j] - d__[jprev], abs(d__1)) <= tol) {

/*           Deflation is possible. */

	    *s = z__[jprev];
	    *c__ = z__[j];

/*           Find sqrt(a**2+b**2) without overflow or */
/*           destructive underflow. */

	    tau = dlapy2_(c__, s);
	    z__[j] = tau;
	    z__[jprev] = 0.;
	    *c__ /= tau;
	    *s = -(*s) / tau;

/*           Record the appropriate Givens rotation */

	    if (*icompq == 1) {
		++(*givptr);
		idxjp = idxq[idx[jprev] + 1];
		idxj = idxq[idx[j] + 1];
		if (idxjp <= nlp1) {
		    --idxjp;
		}
		if (idxj <= nlp1) {
		    --idxj;
		}
		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
		givcol[*givptr + givcol_dim1] = idxj;
		givnum[*givptr + (givnum_dim1 << 1)] = *c__;
		givnum[*givptr + givnum_dim1] = *s;
	    }
	    drot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
	    drot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
	    --k2;
	    idxp[k2] = jprev;
	    jprev = j;
	} else {
	    ++(*k);
	    zw[*k] = z__[jprev];
	    dsigma[*k] = d__[jprev];
	    idxp[*k] = jprev;
	    jprev = j;
	}
    }
    goto L80;
L90:

/*     Record the last singular value. */

    ++(*k);
    zw[*k] = z__[jprev];
    dsigma[*k] = d__[jprev];
    idxp[*k] = jprev;

L100:

/*     Sort the singular values into DSIGMA. The singular values which */
/*     were not deflated go into the first K slots of DSIGMA, except */
/*     that DSIGMA(1) is treated separately. */

    i__1 = n;
    for (j = 2; j <= i__1; ++j) {
	jp = idxp[j];
	dsigma[j] = d__[jp];
	vfw[j] = vf[jp];
	vlw[j] = vl[jp];
/* L110: */
    }
    if (*icompq == 1) {
	i__1 = n;
	for (j = 2; j <= i__1; ++j) {
	    jp = idxp[j];
	    perm[j] = idxq[idx[jp] + 1];
	    if (perm[j] <= nlp1) {
		--perm[j];
	    }
/* L120: */
	}
    }

/*     The deflated singular values go back into the last N - K slots of */
/*     D. */

    i__1 = n - *k;
    dcopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);

/*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
/*     VL(M). */

    dsigma[1] = 0.;
    hlftol = tol / 2.;
    if (abs(dsigma[2]) <= hlftol) {
	dsigma[2] = hlftol;
    }
    if (m > n) {
	z__[1] = dlapy2_(&z1, &z__[m]);
	if (z__[1] <= tol) {
	    *c__ = 1.;
	    *s = 0.;
	    z__[1] = tol;
	} else {
	    *c__ = z1 / z__[1];
	    *s = -z__[m] / z__[1];
	}
	drot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
	drot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
    } else {
	if (abs(z1) <= tol) {
	    z__[1] = tol;
	} else {
	    z__[1] = z1;
	}
    }

/*     Restore Z, VF, and VL. */

    i__1 = *k - 1;
    dcopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
    i__1 = n - 1;
    dcopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
    i__1 = n - 1;
    dcopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);

    return 0;

/*     End of DLASD7 */

} /* dlasd7_ */