/* dlaqsp.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dlaqsp_(char *uplo, integer *n, doublereal *ap,
doublereal *s, doublereal *scond, doublereal *amax, char *equed)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, j, jc;
doublereal cj, large;
extern logical lsame_(char *, char *);
doublereal small;
extern doublereal dlamch_(char *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLAQSP equilibrates a symmetric matrix A using the scaling factors */
/* in the vector S. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored. */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* AP (input/output) DOUBLE PRECISION array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the symmetric matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, the equilibrated matrix: diag(S) * A * diag(S), in */
/* the same storage format as A. */
/* S (input) DOUBLE PRECISION array, dimension (N) */
/* The scale factors for A. */
/* SCOND (input) DOUBLE PRECISION */
/* Ratio of the smallest S(i) to the largest S(i). */
/* AMAX (input) DOUBLE PRECISION */
/* Absolute value of largest matrix entry. */
/* EQUED (output) CHARACTER*1 */
/* Specifies whether or not equilibration was done. */
/* = 'N': No equilibration. */
/* = 'Y': Equilibration was done, i.e., A has been replaced by */
/* diag(S) * A * diag(S). */
/* Internal Parameters */
/* =================== */
/* THRESH is a threshold value used to decide if scaling should be done */
/* based on the ratio of the scaling factors. If SCOND < THRESH, */
/* scaling is done. */
/* LARGE and SMALL are threshold values used to decide if scaling should */
/* be done based on the absolute size of the largest matrix element. */
/* If AMAX > LARGE or AMAX < SMALL, scaling is done. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible */
/* Parameter adjustments */
--s;
--ap;
/* Function Body */
if (*n <= 0) {
*(unsigned char *)equed = 'N';
return 0;
}
/* Initialize LARGE and SMALL. */
small = dlamch_("Safe minimum") / dlamch_("Precision");
large = 1. / small;
if (*scond >= .1 && *amax >= small && *amax <= large) {
/* No equilibration */
*(unsigned char *)equed = 'N';
} else {
/* Replace A by diag(S) * A * diag(S). */
if (lsame_(uplo, "U")) {
/* Upper triangle of A is stored. */
jc = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
cj = s[j];
i__2 = j;
for (i__ = 1; i__ <= i__2; ++i__) {
ap[jc + i__ - 1] = cj * s[i__] * ap[jc + i__ - 1];
/* L10: */
}
jc += j;
/* L20: */
}
} else {
/* Lower triangle of A is stored. */
jc = 1;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
cj = s[j];
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
ap[jc + i__ - j] = cj * s[i__] * ap[jc + i__ - j];
/* L30: */
}
jc = jc + *n - j + 1;
/* L40: */
}
}
*(unsigned char *)equed = 'Y';
}
return 0;
/* End of DLAQSP */
} /* dlaqsp_ */