/* dlanhs.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal dlanhs_(char *norm, integer *n, doublereal *a, integer *lda,
doublereal *work)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
doublereal ret_val, d__1, d__2, d__3;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j;
doublereal sum, scale;
extern logical lsame_(char *, char *);
doublereal value;
extern /* Subroutine */ int dlassq_(integer *, doublereal *, integer *,
doublereal *, doublereal *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DLANHS returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of a */
/* Hessenberg matrix A. */
/* Description */
/* =========== */
/* DLANHS returns the value */
/* DLANHS = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in DLANHS as described */
/* above. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. When N = 0, DLANHS is */
/* set to zero. */
/* A (input) DOUBLE PRECISION array, dimension (LDA,N) */
/* The n by n upper Hessenberg matrix A; the part of A below the */
/* first sub-diagonal is not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(N,1). */
/* WORK (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK)), */
/* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/* referenced. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
/* Function Body */
if (*n == 0) {
value = 0.;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
value = 0.;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
d__2 = value, d__3 = (d__1 = a[i__ + j * a_dim1], abs(d__1));
value = max(d__2,d__3);
/* L10: */
}
/* L20: */
}
} else if (lsame_(norm, "O") || *(unsigned char *)
norm == '1') {
/* Find norm1(A). */
value = 0.;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.;
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
sum += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/* L30: */
}
value = max(value,sum);
/* L40: */
}
} else if (lsame_(norm, "I")) {
/* Find normI(A). */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.;
/* L50: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] += (d__1 = a[i__ + j * a_dim1], abs(d__1));
/* L60: */
}
/* L70: */
}
value = 0.;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
d__1 = value, d__2 = work[i__];
value = max(d__1,d__2);
/* L80: */
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
scale = 0.;
sum = 1.;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *n, i__4 = j + 1;
i__2 = min(i__3,i__4);
dlassq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/* L90: */
}
value = scale * sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of DLANHS */
} /* dlanhs_ */