/* dggevx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static doublereal c_b59 = 0.;
static doublereal c_b60 = 1.;
/* Subroutine */ int dggevx_(char *balanc, char *jobvl, char *jobvr, char *
sense, integer *n, doublereal *a, integer *lda, doublereal *b,
integer *ldb, doublereal *alphar, doublereal *alphai, doublereal *
beta, doublereal *vl, integer *ldvl, doublereal *vr, integer *ldvr,
integer *ilo, integer *ihi, doublereal *lscale, doublereal *rscale,
doublereal *abnrm, doublereal *bbnrm, doublereal *rconde, doublereal *
rcondv, doublereal *work, integer *lwork, integer *iwork, logical *
bwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
vr_offset, i__1, i__2;
doublereal d__1, d__2, d__3, d__4;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, j, m, jc, in, mm, jr;
doublereal eps;
logical ilv, pair;
doublereal anrm, bnrm;
integer ierr, itau;
doublereal temp;
logical ilvl, ilvr;
integer iwrk, iwrk1;
extern logical lsame_(char *, char *);
integer icols;
logical noscl;
integer irows;
extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dggbak_(
char *, char *, integer *, integer *, integer *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *), dggbal_(char *, integer *, doublereal *, integer
*, doublereal *, integer *, integer *, integer *, doublereal *,
doublereal *, doublereal *, integer *);
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
*, doublereal *, integer *, integer *, doublereal *, integer *,
integer *);
logical ilascl, ilbscl;
extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *),
dlacpy_(char *, integer *, integer *, doublereal *, integer *,
doublereal *, integer *), dlaset_(char *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *);
logical ldumma[1];
char chtemp[1];
doublereal bignum;
extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *), dtgevc_(char *, char *,
logical *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *, integer *, doublereal *, integer *);
integer ijobvl;
extern /* Subroutine */ int dtgsna_(char *, char *, logical *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, integer *, doublereal *, integer *, integer *, integer
*), xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer ijobvr;
logical wantsb;
extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *);
doublereal anrmto;
logical wantse;
doublereal bnrmto;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
integer minwrk, maxwrk;
logical wantsn;
doublereal smlnum;
logical lquery, wantsv;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
/* the generalized eigenvalues, and optionally, the left and/or right */
/* generalized eigenvectors. */
/* Optionally also, it computes a balancing transformation to improve */
/* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/* LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
/* the eigenvalues (RCONDE), and reciprocal condition numbers for the */
/* right eigenvectors (RCONDV). */
/* A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
/* lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
/* singular. It is usually represented as the pair (alpha,beta), as */
/* there is a reasonable interpretation for beta=0, and even for both */
/* being zero. */
/* The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
/* of (A,B) satisfies */
/* A * v(j) = lambda(j) * B * v(j) . */
/* The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
/* of (A,B) satisfies */
/* u(j)**H * A = lambda(j) * u(j)**H * B. */
/* where u(j)**H is the conjugate-transpose of u(j). */
/* Arguments */
/* ========= */
/* BALANC (input) CHARACTER*1 */
/* Specifies the balance option to be performed. */
/* = 'N': do not diagonally scale or permute; */
/* = 'P': permute only; */
/* = 'S': scale only; */
/* = 'B': both permute and scale. */
/* Computed reciprocal condition numbers will be for the */
/* matrices after permuting and/or balancing. Permuting does */
/* not change condition numbers (in exact arithmetic), but */
/* balancing does. */
/* JOBVL (input) CHARACTER*1 */
/* = 'N': do not compute the left generalized eigenvectors; */
/* = 'V': compute the left generalized eigenvectors. */
/* JOBVR (input) CHARACTER*1 */
/* = 'N': do not compute the right generalized eigenvectors; */
/* = 'V': compute the right generalized eigenvectors. */
/* SENSE (input) CHARACTER*1 */
/* Determines which reciprocal condition numbers are computed. */
/* = 'N': none are computed; */
/* = 'E': computed for eigenvalues only; */
/* = 'V': computed for eigenvectors only; */
/* = 'B': computed for eigenvalues and eigenvectors. */
/* N (input) INTEGER */
/* The order of the matrices A, B, VL, and VR. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/* On entry, the matrix A in the pair (A,B). */
/* On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
/* or both, then A contains the first part of the real Schur */
/* form of the "balanced" versions of the input A and B. */
/* LDA (input) INTEGER */
/* The leading dimension of A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/* On entry, the matrix B in the pair (A,B). */
/* On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
/* or both, then B contains the second part of the real Schur */
/* form of the "balanced" versions of the input A and B. */
/* LDB (input) INTEGER */
/* The leading dimension of B. LDB >= max(1,N). */
/* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
/* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
/* BETA (output) DOUBLE PRECISION array, dimension (N) */
/* On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
/* be the generalized eigenvalues. If ALPHAI(j) is zero, then */
/* the j-th eigenvalue is real; if positive, then the j-th and */
/* (j+1)-st eigenvalues are a complex conjugate pair, with */
/* ALPHAI(j+1) negative. */
/* Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
/* may easily over- or underflow, and BETA(j) may even be zero. */
/* Thus, the user should avoid naively computing the ratio */
/* ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
/* than and usually comparable with norm(A) in magnitude, and */
/* BETA always less than and usually comparable with norm(B). */
/* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/* after another in the columns of VL, in the same order as */
/* their eigenvalues. If the j-th eigenvalue is real, then */
/* u(j) = VL(:,j), the j-th column of VL. If the j-th and */
/* (j+1)-th eigenvalues form a complex conjugate pair, then */
/* u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
/* Each eigenvector will be scaled so the largest component have */
/* abs(real part) + abs(imag. part) = 1. */
/* Not referenced if JOBVL = 'N'. */
/* LDVL (input) INTEGER */
/* The leading dimension of the matrix VL. LDVL >= 1, and */
/* if JOBVL = 'V', LDVL >= N. */
/* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/* after another in the columns of VR, in the same order as */
/* their eigenvalues. If the j-th eigenvalue is real, then */
/* v(j) = VR(:,j), the j-th column of VR. If the j-th and */
/* (j+1)-th eigenvalues form a complex conjugate pair, then */
/* v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
/* Each eigenvector will be scaled so the largest component have */
/* abs(real part) + abs(imag. part) = 1. */
/* Not referenced if JOBVR = 'N'. */
/* LDVR (input) INTEGER */
/* The leading dimension of the matrix VR. LDVR >= 1, and */
/* if JOBVR = 'V', LDVR >= N. */
/* ILO (output) INTEGER */
/* IHI (output) INTEGER */
/* ILO and IHI are integer values such that on exit */
/* A(i,j) = 0 and B(i,j) = 0 if i > j and */
/* j = 1,...,ILO-1 or i = IHI+1,...,N. */
/* If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
/* LSCALE (output) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and scaling factors applied */
/* to the left side of A and B. If PL(j) is the index of the */
/* row interchanged with row j, and DL(j) is the scaling */
/* factor applied to row j, then */
/* LSCALE(j) = PL(j) for j = 1,...,ILO-1 */
/* = DL(j) for j = ILO,...,IHI */
/* = PL(j) for j = IHI+1,...,N. */
/* The order in which the interchanges are made is N to IHI+1, */
/* then 1 to ILO-1. */
/* RSCALE (output) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and scaling factors applied */
/* to the right side of A and B. If PR(j) is the index of the */
/* column interchanged with column j, and DR(j) is the scaling */
/* factor applied to column j, then */
/* RSCALE(j) = PR(j) for j = 1,...,ILO-1 */
/* = DR(j) for j = ILO,...,IHI */
/* = PR(j) for j = IHI+1,...,N */
/* The order in which the interchanges are made is N to IHI+1, */
/* then 1 to ILO-1. */
/* ABNRM (output) DOUBLE PRECISION */
/* The one-norm of the balanced matrix A. */
/* BBNRM (output) DOUBLE PRECISION */
/* The one-norm of the balanced matrix B. */
/* RCONDE (output) DOUBLE PRECISION array, dimension (N) */
/* If SENSE = 'E' or 'B', the reciprocal condition numbers of */
/* the eigenvalues, stored in consecutive elements of the array. */
/* For a complex conjugate pair of eigenvalues two consecutive */
/* elements of RCONDE are set to the same value. Thus RCONDE(j), */
/* RCONDV(j), and the j-th columns of VL and VR all correspond */
/* to the j-th eigenpair. */
/* If SENSE = 'N or 'V', RCONDE is not referenced. */
/* RCONDV (output) DOUBLE PRECISION array, dimension (N) */
/* If SENSE = 'V' or 'B', the estimated reciprocal condition */
/* numbers of the eigenvectors, stored in consecutive elements */
/* of the array. For a complex eigenvector two consecutive */
/* elements of RCONDV are set to the same value. If the */
/* eigenvalues cannot be reordered to compute RCONDV(j), */
/* RCONDV(j) is set to 0; this can only occur when the true */
/* value would be very small anyway. */
/* If SENSE = 'N' or 'E', RCONDV is not referenced. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,2*N). */
/* If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
/* LWORK >= max(1,6*N). */
/* If SENSE = 'E' or 'B', LWORK >= max(1,10*N). */
/* If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* IWORK (workspace) INTEGER array, dimension (N+6) */
/* If SENSE = 'E', IWORK is not referenced. */
/* BWORK (workspace) LOGICAL array, dimension (N) */
/* If SENSE = 'N', BWORK is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* = 1,...,N: */
/* The QZ iteration failed. No eigenvectors have been */
/* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
/* should be correct for j=INFO+1,...,N. */
/* > N: =N+1: other than QZ iteration failed in DHGEQZ. */
/* =N+2: error return from DTGEVC. */
/* Further Details */
/* =============== */
/* Balancing a matrix pair (A,B) includes, first, permuting rows and */
/* columns to isolate eigenvalues, second, applying diagonal similarity */
/* transformation to the rows and columns to make the rows and columns */
/* as close in norm as possible. The computed reciprocal condition */
/* numbers correspond to the balanced matrix. Permuting rows and columns */
/* will not change the condition numbers (in exact arithmetic) but */
/* diagonal scaling will. For further explanation of balancing, see */
/* section 4.11.1.2 of LAPACK Users' Guide. */
/* An approximate error bound on the chordal distance between the i-th */
/* computed generalized eigenvalue w and the corresponding exact */
/* eigenvalue lambda is */
/* chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
/* An approximate error bound for the angle between the i-th computed */
/* eigenvector VL(i) or VR(i) is given by */
/* EPS * norm(ABNRM, BBNRM) / DIF(i). */
/* For further explanation of the reciprocal condition numbers RCONDE */
/* and RCONDV, see section 4.11 of LAPACK User's Guide. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--lscale;
--rscale;
--rconde;
--rcondv;
--work;
--iwork;
--bwork;
/* Function Body */
if (lsame_(jobvl, "N")) {
ijobvl = 1;
ilvl = FALSE_;
} else if (lsame_(jobvl, "V")) {
ijobvl = 2;
ilvl = TRUE_;
} else {
ijobvl = -1;
ilvl = FALSE_;
}
if (lsame_(jobvr, "N")) {
ijobvr = 1;
ilvr = FALSE_;
} else if (lsame_(jobvr, "V")) {
ijobvr = 2;
ilvr = TRUE_;
} else {
ijobvr = -1;
ilvr = FALSE_;
}
ilv = ilvl || ilvr;
noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
wantsn = lsame_(sense, "N");
wantse = lsame_(sense, "E");
wantsv = lsame_(sense, "V");
wantsb = lsame_(sense, "B");
/* Test the input arguments */
*info = 0;
lquery = *lwork == -1;
if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
|| lsame_(balanc, "B"))) {
*info = -1;
} else if (ijobvl <= 0) {
*info = -2;
} else if (ijobvr <= 0) {
*info = -3;
} else if (! (wantsn || wantse || wantsb || wantsv)) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < max(1,*n)) {
*info = -7;
} else if (*ldb < max(1,*n)) {
*info = -9;
} else if (*ldvl < 1 || ilvl && *ldvl < *n) {
*info = -14;
} else if (*ldvr < 1 || ilvr && *ldvr < *n) {
*info = -16;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV. The workspace is */
/* computed assuming ILO = 1 and IHI = N, the worst case.) */
if (*info == 0) {
if (*n == 0) {
minwrk = 1;
maxwrk = 1;
} else {
if (noscl && ! ilv) {
minwrk = *n << 1;
} else {
minwrk = *n * 6;
}
if (wantse || wantsb) {
minwrk = *n * 10;
}
if (wantsv || wantsb) {
/* Computing MAX */
i__1 = minwrk, i__2 = (*n << 1) * (*n + 4) + 16;
minwrk = max(i__1,i__2);
}
maxwrk = minwrk;
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DGEQRF", " ", n, &
c__1, n, &c__0);
maxwrk = max(i__1,i__2);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORMQR", " ", n, &
c__1, n, &c__0);
maxwrk = max(i__1,i__2);
if (ilvl) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "DORGQR",
" ", n, &c__1, n, &c__0);
maxwrk = max(i__1,i__2);
}
}
work[1] = (doublereal) maxwrk;
if (*lwork < minwrk && ! lquery) {
*info = -26;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGGEVX", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get machine constants */
eps = dlamch_("P");
smlnum = dlamch_("S");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1. / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
ilascl = FALSE_;
if (anrm > 0. && anrm < smlnum) {
anrmto = smlnum;
ilascl = TRUE_;
} else if (anrm > bignum) {
anrmto = bignum;
ilascl = TRUE_;
}
if (ilascl) {
dlascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
ierr);
}
/* Scale B if max element outside range [SMLNUM,BIGNUM] */
bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
ilbscl = FALSE_;
if (bnrm > 0. && bnrm < smlnum) {
bnrmto = smlnum;
ilbscl = TRUE_;
} else if (bnrm > bignum) {
bnrmto = bignum;
ilbscl = TRUE_;
}
if (ilbscl) {
dlascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
ierr);
}
/* Permute and/or balance the matrix pair (A,B) */
/* (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
dggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
lscale[1], &rscale[1], &work[1], &ierr);
/* Compute ABNRM and BBNRM */
*abnrm = dlange_("1", n, n, &a[a_offset], lda, &work[1]);
if (ilascl) {
work[1] = *abnrm;
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
c__1, &ierr);
*abnrm = work[1];
}
*bbnrm = dlange_("1", n, n, &b[b_offset], ldb, &work[1]);
if (ilbscl) {
work[1] = *bbnrm;
dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
c__1, &ierr);
*bbnrm = work[1];
}
/* Reduce B to triangular form (QR decomposition of B) */
/* (Workspace: need N, prefer N*NB ) */
irows = *ihi + 1 - *ilo;
if (ilv || ! wantsn) {
icols = *n + 1 - *ilo;
} else {
icols = irows;
}
itau = 1;
iwrk = itau + irows;
i__1 = *lwork + 1 - iwrk;
dgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
iwrk], &i__1, &ierr);
/* Apply the orthogonal transformation to A */
/* (Workspace: need N, prefer N*NB) */
i__1 = *lwork + 1 - iwrk;
dormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
ierr);
/* Initialize VL and/or VR */
/* (Workspace: need N, prefer N*NB) */
if (ilvl) {
dlaset_("Full", n, n, &c_b59, &c_b60, &vl[vl_offset], ldvl)
;
if (irows > 1) {
i__1 = irows - 1;
i__2 = irows - 1;
dlacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
*ilo + 1 + *ilo * vl_dim1], ldvl);
}
i__1 = *lwork + 1 - iwrk;
dorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
work[itau], &work[iwrk], &i__1, &ierr);
}
if (ilvr) {
dlaset_("Full", n, n, &c_b59, &c_b60, &vr[vr_offset], ldvr)
;
}
/* Reduce to generalized Hessenberg form */
/* (Workspace: none needed) */
if (ilv || ! wantsn) {
/* Eigenvectors requested -- work on whole matrix. */
dgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
} else {
dgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1],
lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
vr_offset], ldvr, &ierr);
}
/* Perform QZ algorithm (Compute eigenvalues, and optionally, the */
/* Schur forms and Schur vectors) */
/* (Workspace: need N) */
if (ilv || ! wantsn) {
*(unsigned char *)chtemp = 'S';
} else {
*(unsigned char *)chtemp = 'E';
}
dhgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
, ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
vr[vr_offset], ldvr, &work[1], lwork, &ierr);
if (ierr != 0) {
if (ierr > 0 && ierr <= *n) {
*info = ierr;
} else if (ierr > *n && ierr <= *n << 1) {
*info = ierr - *n;
} else {
*info = *n + 1;
}
goto L130;
}
/* Compute Eigenvectors and estimate condition numbers if desired */
/* (Workspace: DTGEVC: need 6*N */
/* DTGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
/* need N otherwise ) */
if (ilv || ! wantsn) {
if (ilv) {
if (ilvl) {
if (ilvr) {
*(unsigned char *)chtemp = 'B';
} else {
*(unsigned char *)chtemp = 'L';
}
} else {
*(unsigned char *)chtemp = 'R';
}
dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset],
ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
work[1], &ierr);
if (ierr != 0) {
*info = *n + 2;
goto L130;
}
}
if (! wantsn) {
/* compute eigenvectors (DTGEVC) and estimate condition */
/* numbers (DTGSNA). Note that the definition of the condition */
/* number is not invariant under transformation (u,v) to */
/* (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
/* Schur form (S,T), Q and Z are orthogonal matrices. In order */
/* to avoid using extra 2*N*N workspace, we have to recalculate */
/* eigenvectors and estimate one condition numbers at a time. */
pair = FALSE_;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (pair) {
pair = FALSE_;
goto L20;
}
mm = 1;
if (i__ < *n) {
if (a[i__ + 1 + i__ * a_dim1] != 0.) {
pair = TRUE_;
mm = 2;
}
}
i__2 = *n;
for (j = 1; j <= i__2; ++j) {
bwork[j] = FALSE_;
/* L10: */
}
if (mm == 1) {
bwork[i__] = TRUE_;
} else if (mm == 2) {
bwork[i__] = TRUE_;
bwork[i__ + 1] = TRUE_;
}
iwrk = mm * *n + 1;
iwrk1 = iwrk + mm * *n;
/* Compute a pair of left and right eigenvectors. */
/* (compute workspace: need up to 4*N + 6*N) */
if (wantse || wantsb) {
dtgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
b_offset], ldb, &work[1], n, &work[iwrk], n, &mm,
&m, &work[iwrk1], &ierr);
if (ierr != 0) {
*info = *n + 2;
goto L130;
}
}
i__2 = *lwork - iwrk1 + 1;
dtgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
iwork[1], &ierr);
L20:
;
}
}
}
/* Undo balancing on VL and VR and normalization */
/* (Workspace: none needed) */
if (ilvl) {
dggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
vl_offset], ldvl, &ierr);
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L70;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1], abs(
d__1));
temp = max(d__2,d__3);
/* L30: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1], abs(
d__1)) + (d__2 = vl[jr + (jc + 1) * vl_dim1], abs(
d__2));
temp = max(d__3,d__4);
/* L40: */
}
}
if (temp < smlnum) {
goto L70;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl[jr + jc * vl_dim1] *= temp;
/* L50: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl[jr + jc * vl_dim1] *= temp;
vl[jr + (jc + 1) * vl_dim1] *= temp;
/* L60: */
}
}
L70:
;
}
}
if (ilvr) {
dggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
vr_offset], ldvr, &ierr);
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L120;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1], abs(
d__1));
temp = max(d__2,d__3);
/* L80: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1], abs(
d__1)) + (d__2 = vr[jr + (jc + 1) * vr_dim1], abs(
d__2));
temp = max(d__3,d__4);
/* L90: */
}
}
if (temp < smlnum) {
goto L120;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr[jr + jc * vr_dim1] *= temp;
/* L100: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr[jr + jc * vr_dim1] *= temp;
vr[jr + (jc + 1) * vr_dim1] *= temp;
/* L110: */
}
}
L120:
;
}
}
/* Undo scaling if necessary */
if (ilascl) {
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
ierr);
dlascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
ierr);
}
if (ilbscl) {
dlascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
ierr);
}
L130:
work[1] = (doublereal) maxwrk;
return 0;
/* End of DGGEVX */
} /* dggevx_ */