/* dgegv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
static doublereal c_b27 = 1.;
static doublereal c_b38 = 0.;
/* Subroutine */ int dgegv_(char *jobvl, char *jobvr, integer *n, doublereal *
a, integer *lda, doublereal *b, integer *ldb, doublereal *alphar,
doublereal *alphai, doublereal *beta, doublereal *vl, integer *ldvl,
doublereal *vr, integer *ldvr, doublereal *work, integer *lwork,
integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1,
vr_offset, i__1, i__2;
doublereal d__1, d__2, d__3, d__4;
/* Local variables */
integer jc, nb, in, jr, nb1, nb2, nb3, ihi, ilo;
doublereal eps;
logical ilv;
doublereal absb, anrm, bnrm;
integer itau;
doublereal temp;
logical ilvl, ilvr;
integer lopt;
doublereal anrm1, anrm2, bnrm1, bnrm2, absai, scale, absar, sbeta;
extern logical lsame_(char *, char *);
integer ileft, iinfo, icols, iwork, irows;
extern /* Subroutine */ int dggbak_(char *, char *, integer *, integer *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
integer *, integer *), dggbal_(char *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *,
integer *, doublereal *, doublereal *, doublereal *, integer *);
extern doublereal dlamch_(char *), dlange_(char *, integer *,
integer *, doublereal *, integer *, doublereal *);
doublereal salfai;
extern /* Subroutine */ int dgghrd_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *), dlascl_(char *, integer *, integer *, doublereal
*, doublereal *, integer *, integer *, doublereal *, integer *,
integer *);
doublereal salfar;
extern /* Subroutine */ int dgeqrf_(integer *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, integer *),
dlacpy_(char *, integer *, integer *, doublereal *, integer *,
doublereal *, integer *);
doublereal safmin;
extern /* Subroutine */ int dlaset_(char *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *);
doublereal safmax;
char chtemp[1];
logical ldumma[1];
extern /* Subroutine */ int dhgeqz_(char *, char *, char *, integer *,
integer *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, doublereal *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *), dtgevc_(char *, char *,
logical *, integer *, doublereal *, integer *, doublereal *,
integer *, doublereal *, integer *, doublereal *, integer *,
integer *, integer *, doublereal *, integer *),
xerbla_(char *, integer *);
integer ijobvl, iright;
logical ilimit;
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer ijobvr;
extern /* Subroutine */ int dorgqr_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *);
doublereal onepls;
integer lwkmin;
extern /* Subroutine */ int dormqr_(char *, char *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
integer *, doublereal *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* This routine is deprecated and has been replaced by routine DGGEV. */
/* DGEGV computes the eigenvalues and, optionally, the left and/or right */
/* eigenvectors of a real matrix pair (A,B). */
/* Given two square matrices A and B, */
/* the generalized nonsymmetric eigenvalue problem (GNEP) is to find the */
/* eigenvalues lambda and corresponding (non-zero) eigenvectors x such */
/* that */
/* A*x = lambda*B*x. */
/* An alternate form is to find the eigenvalues mu and corresponding */
/* eigenvectors y such that */
/* mu*A*y = B*y. */
/* These two forms are equivalent with mu = 1/lambda and x = y if */
/* neither lambda nor mu is zero. In order to deal with the case that */
/* lambda or mu is zero or small, two values alpha and beta are returned */
/* for each eigenvalue, such that lambda = alpha/beta and */
/* mu = beta/alpha. */
/* The vectors x and y in the above equations are right eigenvectors of */
/* the matrix pair (A,B). Vectors u and v satisfying */
/* u**H*A = lambda*u**H*B or mu*v**H*A = v**H*B */
/* are left eigenvectors of (A,B). */
/* Note: this routine performs "full balancing" on A and B -- see */
/* "Further Details", below. */
/* Arguments */
/* ========= */
/* JOBVL (input) CHARACTER*1 */
/* = 'N': do not compute the left generalized eigenvectors; */
/* = 'V': compute the left generalized eigenvectors (returned */
/* in VL). */
/* JOBVR (input) CHARACTER*1 */
/* = 'N': do not compute the right generalized eigenvectors; */
/* = 'V': compute the right generalized eigenvectors (returned */
/* in VR). */
/* N (input) INTEGER */
/* The order of the matrices A, B, VL, and VR. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA, N) */
/* On entry, the matrix A. */
/* If JOBVL = 'V' or JOBVR = 'V', then on exit A */
/* contains the real Schur form of A from the generalized Schur */
/* factorization of the pair (A,B) after balancing. */
/* If no eigenvectors were computed, then only the diagonal */
/* blocks from the Schur form will be correct. See DGGHRD and */
/* DHGEQZ for details. */
/* LDA (input) INTEGER */
/* The leading dimension of A. LDA >= max(1,N). */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB, N) */
/* On entry, the matrix B. */
/* If JOBVL = 'V' or JOBVR = 'V', then on exit B contains the */
/* upper triangular matrix obtained from B in the generalized */
/* Schur factorization of the pair (A,B) after balancing. */
/* If no eigenvectors were computed, then only those elements of */
/* B corresponding to the diagonal blocks from the Schur form of */
/* A will be correct. See DGGHRD and DHGEQZ for details. */
/* LDB (input) INTEGER */
/* The leading dimension of B. LDB >= max(1,N). */
/* ALPHAR (output) DOUBLE PRECISION array, dimension (N) */
/* The real parts of each scalar alpha defining an eigenvalue of */
/* GNEP. */
/* ALPHAI (output) DOUBLE PRECISION array, dimension (N) */
/* The imaginary parts of each scalar alpha defining an */
/* eigenvalue of GNEP. If ALPHAI(j) is zero, then the j-th */
/* eigenvalue is real; if positive, then the j-th and */
/* (j+1)-st eigenvalues are a complex conjugate pair, with */
/* ALPHAI(j+1) = -ALPHAI(j). */
/* BETA (output) DOUBLE PRECISION array, dimension (N) */
/* The scalars beta that define the eigenvalues of GNEP. */
/* Together, the quantities alpha = (ALPHAR(j),ALPHAI(j)) and */
/* beta = BETA(j) represent the j-th eigenvalue of the matrix */
/* pair (A,B), in one of the forms lambda = alpha/beta or */
/* mu = beta/alpha. Since either lambda or mu may overflow, */
/* they should not, in general, be computed. */
/* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/* If JOBVL = 'V', the left eigenvectors u(j) are stored */
/* in the columns of VL, in the same order as their eigenvalues. */
/* If the j-th eigenvalue is real, then u(j) = VL(:,j). */
/* If the j-th and (j+1)-st eigenvalues form a complex conjugate */
/* pair, then */
/* u(j) = VL(:,j) + i*VL(:,j+1) */
/* and */
/* u(j+1) = VL(:,j) - i*VL(:,j+1). */
/* Each eigenvector is scaled so that its largest component has */
/* abs(real part) + abs(imag. part) = 1, except for eigenvectors */
/* corresponding to an eigenvalue with alpha = beta = 0, which */
/* are set to zero. */
/* Not referenced if JOBVL = 'N'. */
/* LDVL (input) INTEGER */
/* The leading dimension of the matrix VL. LDVL >= 1, and */
/* if JOBVL = 'V', LDVL >= N. */
/* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/* If JOBVR = 'V', the right eigenvectors x(j) are stored */
/* in the columns of VR, in the same order as their eigenvalues. */
/* If the j-th eigenvalue is real, then x(j) = VR(:,j). */
/* If the j-th and (j+1)-st eigenvalues form a complex conjugate */
/* pair, then */
/* x(j) = VR(:,j) + i*VR(:,j+1) */
/* and */
/* x(j+1) = VR(:,j) - i*VR(:,j+1). */
/* Each eigenvector is scaled so that its largest component has */
/* abs(real part) + abs(imag. part) = 1, except for eigenvalues */
/* corresponding to an eigenvalue with alpha = beta = 0, which */
/* are set to zero. */
/* Not referenced if JOBVR = 'N'. */
/* LDVR (input) INTEGER */
/* The leading dimension of the matrix VR. LDVR >= 1, and */
/* if JOBVR = 'V', LDVR >= N. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. LWORK >= max(1,8*N). */
/* For good performance, LWORK must generally be larger. */
/* To compute the optimal value of LWORK, call ILAENV to get */
/* blocksizes (for DGEQRF, DORMQR, and DORGQR.) Then compute: */
/* NB -- MAX of the blocksizes for DGEQRF, DORMQR, and DORGQR; */
/* The optimal LWORK is: */
/* 2*N + MAX( 6*N, N*(NB+1) ). */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* = 1,...,N: */
/* The QZ iteration failed. No eigenvectors have been */
/* calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
/* should be correct for j=INFO+1,...,N. */
/* > N: errors that usually indicate LAPACK problems: */
/* =N+1: error return from DGGBAL */
/* =N+2: error return from DGEQRF */
/* =N+3: error return from DORMQR */
/* =N+4: error return from DORGQR */
/* =N+5: error return from DGGHRD */
/* =N+6: error return from DHGEQZ (other than failed */
/* iteration) */
/* =N+7: error return from DTGEVC */
/* =N+8: error return from DGGBAK (computing VL) */
/* =N+9: error return from DGGBAK (computing VR) */
/* =N+10: error return from DLASCL (various calls) */
/* Further Details */
/* =============== */
/* Balancing */
/* --------- */
/* This driver calls DGGBAL to both permute and scale rows and columns */
/* of A and B. The permutations PL and PR are chosen so that PL*A*PR */
/* and PL*B*R will be upper triangular except for the diagonal blocks */
/* A(i:j,i:j) and B(i:j,i:j), with i and j as close together as */
/* possible. The diagonal scaling matrices DL and DR are chosen so */
/* that the pair DL*PL*A*PR*DR, DL*PL*B*PR*DR have elements close to */
/* one (except for the elements that start out zero.) */
/* After the eigenvalues and eigenvectors of the balanced matrices */
/* have been computed, DGGBAK transforms the eigenvectors back to what */
/* they would have been (in perfect arithmetic) if they had not been */
/* balanced. */
/* Contents of A and B on Exit */
/* -------- -- - --- - -- ---- */
/* If any eigenvectors are computed (either JOBVL='V' or JOBVR='V' or */
/* both), then on exit the arrays A and B will contain the real Schur */
/* form[*] of the "balanced" versions of A and B. If no eigenvectors */
/* are computed, then only the diagonal blocks will be correct. */
/* [*] See DHGEQZ, DGEGS, or read the book "Matrix Computations", */
/* by Golub & van Loan, pub. by Johns Hopkins U. Press. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Decode the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--alphar;
--alphai;
--beta;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--work;
/* Function Body */
if (lsame_(jobvl, "N")) {
ijobvl = 1;
ilvl = FALSE_;
} else if (lsame_(jobvl, "V")) {
ijobvl = 2;
ilvl = TRUE_;
} else {
ijobvl = -1;
ilvl = FALSE_;
}
if (lsame_(jobvr, "N")) {
ijobvr = 1;
ilvr = FALSE_;
} else if (lsame_(jobvr, "V")) {
ijobvr = 2;
ilvr = TRUE_;
} else {
ijobvr = -1;
ilvr = FALSE_;
}
ilv = ilvl || ilvr;
/* Test the input arguments */
/* Computing MAX */
i__1 = *n << 3;
lwkmin = max(i__1,1);
lwkopt = lwkmin;
work[1] = (doublereal) lwkopt;
lquery = *lwork == -1;
*info = 0;
if (ijobvl <= 0) {
*info = -1;
} else if (ijobvr <= 0) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -7;
} else if (*ldvl < 1 || ilvl && *ldvl < *n) {
*info = -12;
} else if (*ldvr < 1 || ilvr && *ldvr < *n) {
*info = -14;
} else if (*lwork < lwkmin && ! lquery) {
*info = -16;
}
if (*info == 0) {
nb1 = ilaenv_(&c__1, "DGEQRF", " ", n, n, &c_n1, &c_n1);
nb2 = ilaenv_(&c__1, "DORMQR", " ", n, n, n, &c_n1);
nb3 = ilaenv_(&c__1, "DORGQR", " ", n, n, n, &c_n1);
/* Computing MAX */
i__1 = max(nb1,nb2);
nb = max(i__1,nb3);
/* Computing MAX */
i__1 = *n * 6, i__2 = *n * (nb + 1);
lopt = (*n << 1) + max(i__1,i__2);
work[1] = (doublereal) lopt;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEGV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get machine constants */
eps = dlamch_("E") * dlamch_("B");
safmin = dlamch_("S");
safmin += safmin;
safmax = 1. / safmin;
onepls = eps * 4 + 1.;
/* Scale A */
anrm = dlange_("M", n, n, &a[a_offset], lda, &work[1]);
anrm1 = anrm;
anrm2 = 1.;
if (anrm < 1.) {
if (safmax * anrm < 1.) {
anrm1 = safmin;
anrm2 = safmax * anrm;
}
}
if (anrm > 0.) {
dlascl_("G", &c_n1, &c_n1, &anrm, &c_b27, n, n, &a[a_offset], lda, &
iinfo);
if (iinfo != 0) {
*info = *n + 10;
return 0;
}
}
/* Scale B */
bnrm = dlange_("M", n, n, &b[b_offset], ldb, &work[1]);
bnrm1 = bnrm;
bnrm2 = 1.;
if (bnrm < 1.) {
if (safmax * bnrm < 1.) {
bnrm1 = safmin;
bnrm2 = safmax * bnrm;
}
}
if (bnrm > 0.) {
dlascl_("G", &c_n1, &c_n1, &bnrm, &c_b27, n, n, &b[b_offset], ldb, &
iinfo);
if (iinfo != 0) {
*info = *n + 10;
return 0;
}
}
/* Permute the matrix to make it more nearly triangular */
/* Workspace layout: (8*N words -- "work" requires 6*N words) */
/* left_permutation, right_permutation, work... */
ileft = 1;
iright = *n + 1;
iwork = iright + *n;
dggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
ileft], &work[iright], &work[iwork], &iinfo);
if (iinfo != 0) {
*info = *n + 1;
goto L120;
}
/* Reduce B to triangular form, and initialize VL and/or VR */
/* Workspace layout: ("work..." must have at least N words) */
/* left_permutation, right_permutation, tau, work... */
irows = ihi + 1 - ilo;
if (ilv) {
icols = *n + 1 - ilo;
} else {
icols = irows;
}
itau = iwork;
iwork = itau + irows;
i__1 = *lwork + 1 - iwork;
dgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
iwork], &i__1, &iinfo);
if (iinfo >= 0) {
/* Computing MAX */
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
lwkopt = max(i__1,i__2);
}
if (iinfo != 0) {
*info = *n + 2;
goto L120;
}
i__1 = *lwork + 1 - iwork;
dormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwork], &i__1, &
iinfo);
if (iinfo >= 0) {
/* Computing MAX */
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
lwkopt = max(i__1,i__2);
}
if (iinfo != 0) {
*info = *n + 3;
goto L120;
}
if (ilvl) {
dlaset_("Full", n, n, &c_b38, &c_b27, &vl[vl_offset], ldvl)
;
i__1 = irows - 1;
i__2 = irows - 1;
dlacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vl[ilo +
1 + ilo * vl_dim1], ldvl);
i__1 = *lwork + 1 - iwork;
dorgqr_(&irows, &irows, &irows, &vl[ilo + ilo * vl_dim1], ldvl, &work[
itau], &work[iwork], &i__1, &iinfo);
if (iinfo >= 0) {
/* Computing MAX */
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
lwkopt = max(i__1,i__2);
}
if (iinfo != 0) {
*info = *n + 4;
goto L120;
}
}
if (ilvr) {
dlaset_("Full", n, n, &c_b38, &c_b27, &vr[vr_offset], ldvr)
;
}
/* Reduce to generalized Hessenberg form */
if (ilv) {
/* Eigenvectors requested -- work on whole matrix. */
dgghrd_(jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset],
ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &iinfo);
} else {
dgghrd_("N", "N", &irows, &c__1, &irows, &a[ilo + ilo * a_dim1], lda,
&b[ilo + ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
vr_offset], ldvr, &iinfo);
}
if (iinfo != 0) {
*info = *n + 5;
goto L120;
}
/* Perform QZ algorithm */
/* Workspace layout: ("work..." must have at least 1 word) */
/* left_permutation, right_permutation, work... */
iwork = itau;
if (ilv) {
*(unsigned char *)chtemp = 'S';
} else {
*(unsigned char *)chtemp = 'E';
}
i__1 = *lwork + 1 - iwork;
dhgeqz_(chtemp, jobvl, jobvr, n, &ilo, &ihi, &a[a_offset], lda, &b[
b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset],
ldvl, &vr[vr_offset], ldvr, &work[iwork], &i__1, &iinfo);
if (iinfo >= 0) {
/* Computing MAX */
i__1 = lwkopt, i__2 = (integer) work[iwork] + iwork - 1;
lwkopt = max(i__1,i__2);
}
if (iinfo != 0) {
if (iinfo > 0 && iinfo <= *n) {
*info = iinfo;
} else if (iinfo > *n && iinfo <= *n << 1) {
*info = iinfo - *n;
} else {
*info = *n + 6;
}
goto L120;
}
if (ilv) {
/* Compute Eigenvectors (DTGEVC requires 6*N words of workspace) */
if (ilvl) {
if (ilvr) {
*(unsigned char *)chtemp = 'B';
} else {
*(unsigned char *)chtemp = 'L';
}
} else {
*(unsigned char *)chtemp = 'R';
}
dtgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], ldb,
&vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &work[
iwork], &iinfo);
if (iinfo != 0) {
*info = *n + 7;
goto L120;
}
/* Undo balancing on VL and VR, rescale */
if (ilvl) {
dggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
vl[vl_offset], ldvl, &iinfo);
if (iinfo != 0) {
*info = *n + 8;
goto L120;
}
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L50;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vl[jr + jc * vl_dim1],
abs(d__1));
temp = max(d__2,d__3);
/* L10: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vl[jr + jc * vl_dim1],
abs(d__1)) + (d__2 = vl[jr + (jc + 1) *
vl_dim1], abs(d__2));
temp = max(d__3,d__4);
/* L20: */
}
}
if (temp < safmin) {
goto L50;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl[jr + jc * vl_dim1] *= temp;
/* L30: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vl[jr + jc * vl_dim1] *= temp;
vl[jr + (jc + 1) * vl_dim1] *= temp;
/* L40: */
}
}
L50:
;
}
}
if (ilvr) {
dggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &
vr[vr_offset], ldvr, &iinfo);
if (iinfo != 0) {
*info = *n + 9;
goto L120;
}
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
if (alphai[jc] < 0.) {
goto L100;
}
temp = 0.;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__2 = temp, d__3 = (d__1 = vr[jr + jc * vr_dim1],
abs(d__1));
temp = max(d__2,d__3);
/* L60: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
/* Computing MAX */
d__3 = temp, d__4 = (d__1 = vr[jr + jc * vr_dim1],
abs(d__1)) + (d__2 = vr[jr + (jc + 1) *
vr_dim1], abs(d__2));
temp = max(d__3,d__4);
/* L70: */
}
}
if (temp < safmin) {
goto L100;
}
temp = 1. / temp;
if (alphai[jc] == 0.) {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr[jr + jc * vr_dim1] *= temp;
/* L80: */
}
} else {
i__2 = *n;
for (jr = 1; jr <= i__2; ++jr) {
vr[jr + jc * vr_dim1] *= temp;
vr[jr + (jc + 1) * vr_dim1] *= temp;
/* L90: */
}
}
L100:
;
}
}
/* End of eigenvector calculation */
}
/* Undo scaling in alpha, beta */
/* Note: this does not give the alpha and beta for the unscaled */
/* problem. */
/* Un-scaling is limited to avoid underflow in alpha and beta */
/* if they are significant. */
i__1 = *n;
for (jc = 1; jc <= i__1; ++jc) {
absar = (d__1 = alphar[jc], abs(d__1));
absai = (d__1 = alphai[jc], abs(d__1));
absb = (d__1 = beta[jc], abs(d__1));
salfar = anrm * alphar[jc];
salfai = anrm * alphai[jc];
sbeta = bnrm * beta[jc];
ilimit = FALSE_;
scale = 1.;
/* Check for significant underflow in ALPHAI */
/* Computing MAX */
d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
absb;
if (abs(salfai) < safmin && absai >= max(d__1,d__2)) {
ilimit = TRUE_;
/* Computing MAX */
d__1 = onepls * safmin, d__2 = anrm2 * absai;
scale = onepls * safmin / anrm1 / max(d__1,d__2);
} else if (salfai == 0.) {
/* If insignificant underflow in ALPHAI, then make the */
/* conjugate eigenvalue real. */
if (alphai[jc] < 0. && jc > 1) {
alphai[jc - 1] = 0.;
} else if (alphai[jc] > 0. && jc < *n) {
alphai[jc + 1] = 0.;
}
}
/* Check for significant underflow in ALPHAR */
/* Computing MAX */
d__1 = safmin, d__2 = eps * absai, d__1 = max(d__1,d__2), d__2 = eps *
absb;
if (abs(salfar) < safmin && absar >= max(d__1,d__2)) {
ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
d__3 = onepls * safmin, d__4 = anrm2 * absar;
d__1 = scale, d__2 = onepls * safmin / anrm1 / max(d__3,d__4);
scale = max(d__1,d__2);
}
/* Check for significant underflow in BETA */
/* Computing MAX */
d__1 = safmin, d__2 = eps * absar, d__1 = max(d__1,d__2), d__2 = eps *
absai;
if (abs(sbeta) < safmin && absb >= max(d__1,d__2)) {
ilimit = TRUE_;
/* Computing MAX */
/* Computing MAX */
d__3 = onepls * safmin, d__4 = bnrm2 * absb;
d__1 = scale, d__2 = onepls * safmin / bnrm1 / max(d__3,d__4);
scale = max(d__1,d__2);
}
/* Check for possible overflow when limiting scaling */
if (ilimit) {
/* Computing MAX */
d__1 = abs(salfar), d__2 = abs(salfai), d__1 = max(d__1,d__2),
d__2 = abs(sbeta);
temp = scale * safmin * max(d__1,d__2);
if (temp > 1.) {
scale /= temp;
}
if (scale < 1.) {
ilimit = FALSE_;
}
}
/* Recompute un-scaled ALPHAR, ALPHAI, BETA if necessary. */
if (ilimit) {
salfar = scale * alphar[jc] * anrm;
salfai = scale * alphai[jc] * anrm;
sbeta = scale * beta[jc] * bnrm;
}
alphar[jc] = salfar;
alphai[jc] = salfai;
beta[jc] = sbeta;
/* L110: */
}
L120:
work[1] = (doublereal) lwkopt;
return 0;
/* End of DGEGV */
} /* dgegv_ */