/* dgeevx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c__0 = 0;
static integer c_n1 = -1;
/* Subroutine */ int dgeevx_(char *balanc, char *jobvl, char *jobvr, char *
sense, integer *n, doublereal *a, integer *lda, doublereal *wr,
doublereal *wi, doublereal *vl, integer *ldvl, doublereal *vr,
integer *ldvr, integer *ilo, integer *ihi, doublereal *scale,
doublereal *abnrm, doublereal *rconde, doublereal *rcondv, doublereal
*work, integer *lwork, integer *iwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1,
i__2, i__3;
doublereal d__1, d__2;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
integer i__, k;
doublereal r__, cs, sn;
char job[1];
doublereal scl, dum[1], eps;
char side[1];
doublereal anrm;
integer ierr, itau;
extern /* Subroutine */ int drot_(integer *, doublereal *, integer *,
doublereal *, integer *, doublereal *, doublereal *);
integer iwrk, nout;
extern doublereal dnrm2_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dscal_(integer *, doublereal *, doublereal *,
integer *);
integer icond;
extern logical lsame_(char *, char *);
extern doublereal dlapy2_(doublereal *, doublereal *);
extern /* Subroutine */ int dlabad_(doublereal *, doublereal *), dgebak_(
char *, char *, integer *, integer *, integer *, doublereal *,
integer *, doublereal *, integer *, integer *),
dgebal_(char *, integer *, doublereal *, integer *, integer *,
integer *, doublereal *, integer *);
logical scalea;
extern doublereal dlamch_(char *);
doublereal cscale;
extern doublereal dlange_(char *, integer *, integer *, doublereal *,
integer *, doublereal *);
extern /* Subroutine */ int dgehrd_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dlascl_(char *, integer *, integer *, doublereal *,
doublereal *, integer *, integer *, doublereal *, integer *,
integer *);
extern integer idamax_(integer *, doublereal *, integer *);
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
dlartg_(doublereal *, doublereal *, doublereal *, doublereal *,
doublereal *), xerbla_(char *, integer *);
logical select[1];
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
doublereal bignum;
extern /* Subroutine */ int dorghr_(integer *, integer *, integer *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *), dhseqr_(char *, char *, integer *, integer *, integer
*, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, integer *, doublereal *, integer *, integer *), dtrevc_(char *, char *, logical *, integer *,
doublereal *, integer *, doublereal *, integer *, doublereal *,
integer *, integer *, integer *, doublereal *, integer *), dtrsna_(char *, char *, logical *, integer *, doublereal
*, integer *, doublereal *, integer *, doublereal *, integer *,
doublereal *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *, integer *);
integer minwrk, maxwrk;
logical wantvl, wntsnb;
integer hswork;
logical wntsne;
doublereal smlnum;
logical lquery, wantvr, wntsnn, wntsnv;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGEEVX computes for an N-by-N real nonsymmetric matrix A, the */
/* eigenvalues and, optionally, the left and/or right eigenvectors. */
/* Optionally also, it computes a balancing transformation to improve */
/* the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
/* SCALE, and ABNRM), reciprocal condition numbers for the eigenvalues */
/* (RCONDE), and reciprocal condition numbers for the right */
/* eigenvectors (RCONDV). */
/* The right eigenvector v(j) of A satisfies */
/* A * v(j) = lambda(j) * v(j) */
/* where lambda(j) is its eigenvalue. */
/* The left eigenvector u(j) of A satisfies */
/* u(j)**H * A = lambda(j) * u(j)**H */
/* where u(j)**H denotes the conjugate transpose of u(j). */
/* The computed eigenvectors are normalized to have Euclidean norm */
/* equal to 1 and largest component real. */
/* Balancing a matrix means permuting the rows and columns to make it */
/* more nearly upper triangular, and applying a diagonal similarity */
/* transformation D * A * D**(-1), where D is a diagonal matrix, to */
/* make its rows and columns closer in norm and the condition numbers */
/* of its eigenvalues and eigenvectors smaller. The computed */
/* reciprocal condition numbers correspond to the balanced matrix. */
/* Permuting rows and columns will not change the condition numbers */
/* (in exact arithmetic) but diagonal scaling will. For further */
/* explanation of balancing, see section 4.10.2 of the LAPACK */
/* Users' Guide. */
/* Arguments */
/* ========= */
/* BALANC (input) CHARACTER*1 */
/* Indicates how the input matrix should be diagonally scaled */
/* and/or permuted to improve the conditioning of its */
/* eigenvalues. */
/* = 'N': Do not diagonally scale or permute; */
/* = 'P': Perform permutations to make the matrix more nearly */
/* upper triangular. Do not diagonally scale; */
/* = 'S': Diagonally scale the matrix, i.e. replace A by */
/* D*A*D**(-1), where D is a diagonal matrix chosen */
/* to make the rows and columns of A more equal in */
/* norm. Do not permute; */
/* = 'B': Both diagonally scale and permute A. */
/* Computed reciprocal condition numbers will be for the matrix */
/* after balancing and/or permuting. Permuting does not change */
/* condition numbers (in exact arithmetic), but balancing does. */
/* JOBVL (input) CHARACTER*1 */
/* = 'N': left eigenvectors of A are not computed; */
/* = 'V': left eigenvectors of A are computed. */
/* If SENSE = 'E' or 'B', JOBVL must = 'V'. */
/* JOBVR (input) CHARACTER*1 */
/* = 'N': right eigenvectors of A are not computed; */
/* = 'V': right eigenvectors of A are computed. */
/* If SENSE = 'E' or 'B', JOBVR must = 'V'. */
/* SENSE (input) CHARACTER*1 */
/* Determines which reciprocal condition numbers are computed. */
/* = 'N': None are computed; */
/* = 'E': Computed for eigenvalues only; */
/* = 'V': Computed for right eigenvectors only; */
/* = 'B': Computed for eigenvalues and right eigenvectors. */
/* If SENSE = 'E' or 'B', both left and right eigenvectors */
/* must also be computed (JOBVL = 'V' and JOBVR = 'V'). */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) DOUBLE PRECISION array, dimension (LDA,N) */
/* On entry, the N-by-N matrix A. */
/* On exit, A has been overwritten. If JOBVL = 'V' or */
/* JOBVR = 'V', A contains the real Schur form of the balanced */
/* version of the input matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* WR (output) DOUBLE PRECISION array, dimension (N) */
/* WI (output) DOUBLE PRECISION array, dimension (N) */
/* WR and WI contain the real and imaginary parts, */
/* respectively, of the computed eigenvalues. Complex */
/* conjugate pairs of eigenvalues will appear consecutively */
/* with the eigenvalue having the positive imaginary part */
/* first. */
/* VL (output) DOUBLE PRECISION array, dimension (LDVL,N) */
/* If JOBVL = 'V', the left eigenvectors u(j) are stored one */
/* after another in the columns of VL, in the same order */
/* as their eigenvalues. */
/* If JOBVL = 'N', VL is not referenced. */
/* If the j-th eigenvalue is real, then u(j) = VL(:,j), */
/* the j-th column of VL. */
/* If the j-th and (j+1)-st eigenvalues form a complex */
/* conjugate pair, then u(j) = VL(:,j) + i*VL(:,j+1) and */
/* u(j+1) = VL(:,j) - i*VL(:,j+1). */
/* LDVL (input) INTEGER */
/* The leading dimension of the array VL. LDVL >= 1; if */
/* JOBVL = 'V', LDVL >= N. */
/* VR (output) DOUBLE PRECISION array, dimension (LDVR,N) */
/* If JOBVR = 'V', the right eigenvectors v(j) are stored one */
/* after another in the columns of VR, in the same order */
/* as their eigenvalues. */
/* If JOBVR = 'N', VR is not referenced. */
/* If the j-th eigenvalue is real, then v(j) = VR(:,j), */
/* the j-th column of VR. */
/* If the j-th and (j+1)-st eigenvalues form a complex */
/* conjugate pair, then v(j) = VR(:,j) + i*VR(:,j+1) and */
/* v(j+1) = VR(:,j) - i*VR(:,j+1). */
/* LDVR (input) INTEGER */
/* The leading dimension of the array VR. LDVR >= 1, and if */
/* JOBVR = 'V', LDVR >= N. */
/* ILO (output) INTEGER */
/* IHI (output) INTEGER */
/* ILO and IHI are integer values determined when A was */
/* balanced. The balanced A(i,j) = 0 if I > J and */
/* J = 1,...,ILO-1 or I = IHI+1,...,N. */
/* SCALE (output) DOUBLE PRECISION array, dimension (N) */
/* Details of the permutations and scaling factors applied */
/* when balancing A. If P(j) is the index of the row and column */
/* interchanged with row and column j, and D(j) is the scaling */
/* factor applied to row and column j, then */
/* SCALE(J) = P(J), for J = 1,...,ILO-1 */
/* = D(J), for J = ILO,...,IHI */
/* = P(J) for J = IHI+1,...,N. */
/* The order in which the interchanges are made is N to IHI+1, */
/* then 1 to ILO-1. */
/* ABNRM (output) DOUBLE PRECISION */
/* The one-norm of the balanced matrix (the maximum */
/* of the sum of absolute values of elements of any column). */
/* RCONDE (output) DOUBLE PRECISION array, dimension (N) */
/* RCONDE(j) is the reciprocal condition number of the j-th */
/* eigenvalue. */
/* RCONDV (output) DOUBLE PRECISION array, dimension (N) */
/* RCONDV(j) is the reciprocal condition number of the j-th */
/* right eigenvector. */
/* WORK (workspace/output) DOUBLE PRECISION array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The dimension of the array WORK. If SENSE = 'N' or 'E', */
/* LWORK >= max(1,2*N), and if JOBVL = 'V' or JOBVR = 'V', */
/* LWORK >= 3*N. If SENSE = 'V' or 'B', LWORK >= N*(N+6). */
/* For good performance, LWORK must generally be larger. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* IWORK (workspace) INTEGER array, dimension (2*N-2) */
/* If SENSE = 'N' or 'E', not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: if INFO = i, the QR algorithm failed to compute all the */
/* eigenvalues, and no eigenvectors or condition numbers */
/* have been computed; elements 1:ILO-1 and i+1:N of WR */
/* and WI contain eigenvalues which have converged. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--wr;
--wi;
vl_dim1 = *ldvl;
vl_offset = 1 + vl_dim1;
vl -= vl_offset;
vr_dim1 = *ldvr;
vr_offset = 1 + vr_dim1;
vr -= vr_offset;
--scale;
--rconde;
--rcondv;
--work;
--iwork;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
wantvl = lsame_(jobvl, "V");
wantvr = lsame_(jobvr, "V");
wntsnn = lsame_(sense, "N");
wntsne = lsame_(sense, "E");
wntsnv = lsame_(sense, "V");
wntsnb = lsame_(sense, "B");
if (! (lsame_(balanc, "N") || lsame_(balanc, "S") || lsame_(balanc, "P")
|| lsame_(balanc, "B"))) {
*info = -1;
} else if (! wantvl && ! lsame_(jobvl, "N")) {
*info = -2;
} else if (! wantvr && ! lsame_(jobvr, "N")) {
*info = -3;
} else if (! (wntsnn || wntsne || wntsnb || wntsnv) || (wntsne || wntsnb)
&& ! (wantvl && wantvr)) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else if (*lda < max(1,*n)) {
*info = -7;
} else if (*ldvl < 1 || wantvl && *ldvl < *n) {
*info = -11;
} else if (*ldvr < 1 || wantvr && *ldvr < *n) {
*info = -13;
}
/* Compute workspace */
/* (Note: Comments in the code beginning "Workspace:" describe the */
/* minimal amount of workspace needed at that point in the code, */
/* as well as the preferred amount for good performance. */
/* NB refers to the optimal block size for the immediately */
/* following subroutine, as returned by ILAENV. */
/* HSWORK refers to the workspace preferred by DHSEQR, as */
/* calculated below. HSWORK is computed assuming ILO=1 and IHI=N, */
/* the worst case.) */
if (*info == 0) {
if (*n == 0) {
minwrk = 1;
maxwrk = 1;
} else {
maxwrk = *n + *n * ilaenv_(&c__1, "DGEHRD", " ", n, &c__1, n, &
c__0);
if (wantvl) {
dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
1], &vl[vl_offset], ldvl, &work[1], &c_n1, info);
} else if (wantvr) {
dhseqr_("S", "V", n, &c__1, n, &a[a_offset], lda, &wr[1], &wi[
1], &vr[vr_offset], ldvr, &work[1], &c_n1, info);
} else {
if (wntsnn) {
dhseqr_("E", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
&wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
info);
} else {
dhseqr_("S", "N", n, &c__1, n, &a[a_offset], lda, &wr[1],
&wi[1], &vr[vr_offset], ldvr, &work[1], &c_n1,
info);
}
}
hswork = (integer) work[1];
if (! wantvl && ! wantvr) {
minwrk = *n << 1;
if (! wntsnn) {
/* Computing MAX */
i__1 = minwrk, i__2 = *n * *n + *n * 6;
minwrk = max(i__1,i__2);
}
maxwrk = max(maxwrk,hswork);
if (! wntsnn) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *n + *n * 6;
maxwrk = max(i__1,i__2);
}
} else {
minwrk = *n * 3;
if (! wntsnn && ! wntsne) {
/* Computing MAX */
i__1 = minwrk, i__2 = *n * *n + *n * 6;
minwrk = max(i__1,i__2);
}
maxwrk = max(maxwrk,hswork);
/* Computing MAX */
i__1 = maxwrk, i__2 = *n + (*n - 1) * ilaenv_(&c__1, "DORGHR",
" ", n, &c__1, n, &c_n1);
maxwrk = max(i__1,i__2);
if (! wntsnn && ! wntsne) {
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * *n + *n * 6;
maxwrk = max(i__1,i__2);
}
/* Computing MAX */
i__1 = maxwrk, i__2 = *n * 3;
maxwrk = max(i__1,i__2);
}
maxwrk = max(maxwrk,minwrk);
}
work[1] = (doublereal) maxwrk;
if (*lwork < minwrk && ! lquery) {
*info = -21;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGEEVX", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Get machine constants */
eps = dlamch_("P");
smlnum = dlamch_("S");
bignum = 1. / smlnum;
dlabad_(&smlnum, &bignum);
smlnum = sqrt(smlnum) / eps;
bignum = 1. / smlnum;
/* Scale A if max element outside range [SMLNUM,BIGNUM] */
icond = 0;
anrm = dlange_("M", n, n, &a[a_offset], lda, dum);
scalea = FALSE_;
if (anrm > 0. && anrm < smlnum) {
scalea = TRUE_;
cscale = smlnum;
} else if (anrm > bignum) {
scalea = TRUE_;
cscale = bignum;
}
if (scalea) {
dlascl_("G", &c__0, &c__0, &anrm, &cscale, n, n, &a[a_offset], lda, &
ierr);
}
/* Balance the matrix and compute ABNRM */
dgebal_(balanc, n, &a[a_offset], lda, ilo, ihi, &scale[1], &ierr);
*abnrm = dlange_("1", n, n, &a[a_offset], lda, dum);
if (scalea) {
dum[0] = *abnrm;
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &c__1, &c__1, dum, &c__1, &
ierr);
*abnrm = dum[0];
}
/* Reduce to upper Hessenberg form */
/* (Workspace: need 2*N, prefer N+N*NB) */
itau = 1;
iwrk = itau + *n;
i__1 = *lwork - iwrk + 1;
dgehrd_(n, ilo, ihi, &a[a_offset], lda, &work[itau], &work[iwrk], &i__1, &
ierr);
if (wantvl) {
/* Want left eigenvectors */
/* Copy Householder vectors to VL */
*(unsigned char *)side = 'L';
dlacpy_("L", n, n, &a[a_offset], lda, &vl[vl_offset], ldvl)
;
/* Generate orthogonal matrix in VL */
/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
i__1 = *lwork - iwrk + 1;
dorghr_(n, ilo, ihi, &vl[vl_offset], ldvl, &work[itau], &work[iwrk], &
i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VL */
/* (Workspace: need 1, prefer HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vl[
vl_offset], ldvl, &work[iwrk], &i__1, info);
if (wantvr) {
/* Want left and right eigenvectors */
/* Copy Schur vectors to VR */
*(unsigned char *)side = 'B';
dlacpy_("F", n, n, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr);
}
} else if (wantvr) {
/* Want right eigenvectors */
/* Copy Householder vectors to VR */
*(unsigned char *)side = 'R';
dlacpy_("L", n, n, &a[a_offset], lda, &vr[vr_offset], ldvr)
;
/* Generate orthogonal matrix in VR */
/* (Workspace: need 2*N-1, prefer N+(N-1)*NB) */
i__1 = *lwork - iwrk + 1;
dorghr_(n, ilo, ihi, &vr[vr_offset], ldvr, &work[itau], &work[iwrk], &
i__1, &ierr);
/* Perform QR iteration, accumulating Schur vectors in VR */
/* (Workspace: need 1, prefer HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
dhseqr_("S", "V", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
vr_offset], ldvr, &work[iwrk], &i__1, info);
} else {
/* Compute eigenvalues only */
/* If condition numbers desired, compute Schur form */
if (wntsnn) {
*(unsigned char *)job = 'E';
} else {
*(unsigned char *)job = 'S';
}
/* (Workspace: need 1, prefer HSWORK (see comments) ) */
iwrk = itau;
i__1 = *lwork - iwrk + 1;
dhseqr_(job, "N", n, ilo, ihi, &a[a_offset], lda, &wr[1], &wi[1], &vr[
vr_offset], ldvr, &work[iwrk], &i__1, info);
}
/* If INFO > 0 from DHSEQR, then quit */
if (*info > 0) {
goto L50;
}
if (wantvl || wantvr) {
/* Compute left and/or right eigenvectors */
/* (Workspace: need 3*N) */
dtrevc_(side, "B", select, n, &a[a_offset], lda, &vl[vl_offset], ldvl,
&vr[vr_offset], ldvr, n, &nout, &work[iwrk], &ierr);
}
/* Compute condition numbers if desired */
/* (Workspace: need N*N+6*N unless SENSE = 'E') */
if (! wntsnn) {
dtrsna_(sense, "A", select, n, &a[a_offset], lda, &vl[vl_offset],
ldvl, &vr[vr_offset], ldvr, &rconde[1], &rcondv[1], n, &nout,
&work[iwrk], n, &iwork[1], &icond);
}
if (wantvl) {
/* Undo balancing of left eigenvectors */
dgebak_(balanc, "L", n, ilo, ihi, &scale[1], n, &vl[vl_offset], ldvl,
&ierr);
/* Normalize left eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (wi[i__] == 0.) {
scl = 1. / dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
} else if (wi[i__] > 0.) {
d__1 = dnrm2_(n, &vl[i__ * vl_dim1 + 1], &c__1);
d__2 = dnrm2_(n, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
scl = 1. / dlapy2_(&d__1, &d__2);
dscal_(n, &scl, &vl[i__ * vl_dim1 + 1], &c__1);
dscal_(n, &scl, &vl[(i__ + 1) * vl_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
d__1 = vl[k + i__ * vl_dim1];
/* Computing 2nd power */
d__2 = vl[k + (i__ + 1) * vl_dim1];
work[k] = d__1 * d__1 + d__2 * d__2;
/* L10: */
}
k = idamax_(n, &work[1], &c__1);
dlartg_(&vl[k + i__ * vl_dim1], &vl[k + (i__ + 1) * vl_dim1],
&cs, &sn, &r__);
drot_(n, &vl[i__ * vl_dim1 + 1], &c__1, &vl[(i__ + 1) *
vl_dim1 + 1], &c__1, &cs, &sn);
vl[k + (i__ + 1) * vl_dim1] = 0.;
}
/* L20: */
}
}
if (wantvr) {
/* Undo balancing of right eigenvectors */
dgebak_(balanc, "R", n, ilo, ihi, &scale[1], n, &vr[vr_offset], ldvr,
&ierr);
/* Normalize right eigenvectors and make largest component real */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (wi[i__] == 0.) {
scl = 1. / dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
} else if (wi[i__] > 0.) {
d__1 = dnrm2_(n, &vr[i__ * vr_dim1 + 1], &c__1);
d__2 = dnrm2_(n, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
scl = 1. / dlapy2_(&d__1, &d__2);
dscal_(n, &scl, &vr[i__ * vr_dim1 + 1], &c__1);
dscal_(n, &scl, &vr[(i__ + 1) * vr_dim1 + 1], &c__1);
i__2 = *n;
for (k = 1; k <= i__2; ++k) {
/* Computing 2nd power */
d__1 = vr[k + i__ * vr_dim1];
/* Computing 2nd power */
d__2 = vr[k + (i__ + 1) * vr_dim1];
work[k] = d__1 * d__1 + d__2 * d__2;
/* L30: */
}
k = idamax_(n, &work[1], &c__1);
dlartg_(&vr[k + i__ * vr_dim1], &vr[k + (i__ + 1) * vr_dim1],
&cs, &sn, &r__);
drot_(n, &vr[i__ * vr_dim1 + 1], &c__1, &vr[(i__ + 1) *
vr_dim1 + 1], &c__1, &cs, &sn);
vr[k + (i__ + 1) * vr_dim1] = 0.;
}
/* L40: */
}
}
/* Undo scaling if necessary */
L50:
if (scalea) {
i__1 = *n - *info;
/* Computing MAX */
i__3 = *n - *info;
i__2 = max(i__3,1);
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[*info +
1], &i__2, &ierr);
i__1 = *n - *info;
/* Computing MAX */
i__3 = *n - *info;
i__2 = max(i__3,1);
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[*info +
1], &i__2, &ierr);
if (*info == 0) {
if ((wntsnv || wntsnb) && icond == 0) {
dlascl_("G", &c__0, &c__0, &cscale, &anrm, n, &c__1, &rcondv[
1], n, &ierr);
}
} else {
i__1 = *ilo - 1;
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wr[1],
n, &ierr);
i__1 = *ilo - 1;
dlascl_("G", &c__0, &c__0, &cscale, &anrm, &i__1, &c__1, &wi[1],
n, &ierr);
}
}
work[1] = (doublereal) maxwrk;
return 0;
/* End of DGEEVX */
} /* dgeevx_ */