/* dgbsvxx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int dgbsvxx_(char *fact, char *trans, integer *n, integer *
kl, integer *ku, integer *nrhs, doublereal *ab, integer *ldab,
doublereal *afb, integer *ldafb, integer *ipiv, char *equed,
doublereal *r__, doublereal *c__, doublereal *b, integer *ldb,
doublereal *x, integer *ldx, doublereal *rcond, doublereal *rpvgrw,
doublereal *berr, integer *n_err_bnds__, doublereal *err_bnds_norm__,
doublereal *err_bnds_comp__, integer *nparams, doublereal *params,
doublereal *work, integer *iwork, integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, afb_dim1, afb_offset, b_dim1, b_offset,
x_dim1, x_offset, err_bnds_norm_dim1, err_bnds_norm_offset,
err_bnds_comp_dim1, err_bnds_comp_offset, i__1, i__2;
doublereal d__1, d__2;
/* Local variables */
integer i__, j;
doublereal amax;
extern doublereal dla_gbrpvgrw__(integer *, integer *, integer *, integer
*, doublereal *, integer *, doublereal *, integer *);
extern logical lsame_(char *, char *);
doublereal rcmin, rcmax;
logical equil;
extern doublereal dlamch_(char *);
extern /* Subroutine */ int dlaqgb_(integer *, integer *, integer *,
integer *, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, char *);
doublereal colcnd;
extern /* Subroutine */ int dgbtrf_(integer *, integer *, integer *,
integer *, doublereal *, integer *, integer *, integer *);
logical nofact;
extern /* Subroutine */ int dlacpy_(char *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *),
xerbla_(char *, integer *);
doublereal bignum;
extern /* Subroutine */ int dgbtrs_(char *, integer *, integer *, integer
*, integer *, doublereal *, integer *, integer *, doublereal *,
integer *, integer *);
integer infequ;
logical colequ;
doublereal rowcnd;
logical notran;
doublereal smlnum;
logical rowequ;
extern /* Subroutine */ int dlascl2_(integer *, integer *, doublereal *,
doublereal *, integer *), dgbequb_(integer *, integer *, integer *
, integer *, doublereal *, integer *, doublereal *, doublereal *,
doublereal *, doublereal *, doublereal *, integer *), dgbrfsx_(
char *, char *, integer *, integer *, integer *, integer *,
doublereal *, integer *, doublereal *, integer *, integer *,
doublereal *, doublereal *, doublereal *, integer *, doublereal *,
integer *, doublereal *, doublereal *, integer *, doublereal *,
doublereal *, integer *, doublereal *, doublereal *, integer *,
integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* -- Contributed by James Demmel, Deaglan Halligan, Yozo Hida and -- */
/* -- Jason Riedy of Univ. of California Berkeley. -- */
/* -- November 2008 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley and NAG Ltd. -- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* DGBSVXX uses the LU factorization to compute the solution to a */
/* double precision system of linear equations A * X = B, where A is an */
/* N-by-N matrix and X and B are N-by-NRHS matrices. */
/* If requested, both normwise and maximum componentwise error bounds */
/* are returned. DGBSVXX will return a solution with a tiny */
/* guaranteed error (O(eps) where eps is the working machine */
/* precision) unless the matrix is very ill-conditioned, in which */
/* case a warning is returned. Relevant condition numbers also are */
/* calculated and returned. */
/* DGBSVXX accepts user-provided factorizations and equilibration */
/* factors; see the definitions of the FACT and EQUED options. */
/* Solving with refinement and using a factorization from a previous */
/* DGBSVXX call will also produce a solution with either O(eps) */
/* errors or warnings, but we cannot make that claim for general */
/* user-provided factorizations and equilibration factors if they */
/* differ from what DGBSVXX would itself produce. */
/* Description */
/* =========== */
/* The following steps are performed: */
/* 1. If FACT = 'E', double precision scaling factors are computed to equilibrate */
/* the system: */
/* TRANS = 'N': diag(R)*A*diag(C) *inv(diag(C))*X = diag(R)*B */
/* TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B */
/* TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B */
/* Whether or not the system will be equilibrated depends on the */
/* scaling of the matrix A, but if equilibration is used, A is */
/* overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N') */
/* or diag(C)*B (if TRANS = 'T' or 'C'). */
/* 2. If FACT = 'N' or 'E', the LU decomposition is used to factor */
/* the matrix A (after equilibration if FACT = 'E') as */
/* A = P * L * U, */
/* where P is a permutation matrix, L is a unit lower triangular */
/* matrix, and U is upper triangular. */
/* 3. If some U(i,i)=0, so that U is exactly singular, then the */
/* routine returns with INFO = i. Otherwise, the factored form of A */
/* is used to estimate the condition number of the matrix A (see */
/* argument RCOND). If the reciprocal of the condition number is less */
/* than machine precision, the routine still goes on to solve for X */
/* and compute error bounds as described below. */
/* 4. The system of equations is solved for X using the factored form */
/* of A. */
/* 5. By default (unless PARAMS(LA_LINRX_ITREF_I) is set to zero), */
/* the routine will use iterative refinement to try to get a small */
/* error and error bounds. Refinement calculates the residual to at */
/* least twice the working precision. */
/* 6. If equilibration was used, the matrix X is premultiplied by */
/* diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so */
/* that it solves the original system before equilibration. */
/* Arguments */
/* ========= */
/* Some optional parameters are bundled in the PARAMS array. These */
/* settings determine how refinement is performed, but often the */
/* defaults are acceptable. If the defaults are acceptable, users */
/* can pass NPARAMS = 0 which prevents the source code from accessing */
/* the PARAMS argument. */
/* FACT (input) CHARACTER*1 */
/* Specifies whether or not the factored form of the matrix A is */
/* supplied on entry, and if not, whether the matrix A should be */
/* equilibrated before it is factored. */
/* = 'F': On entry, AF and IPIV contain the factored form of A. */
/* If EQUED is not 'N', the matrix A has been */
/* equilibrated with scaling factors given by R and C. */
/* A, AF, and IPIV are not modified. */
/* = 'N': The matrix A will be copied to AF and factored. */
/* = 'E': The matrix A will be equilibrated if necessary, then */
/* copied to AF and factored. */
/* TRANS (input) CHARACTER*1 */
/* Specifies the form of the system of equations: */
/* = 'N': A * X = B (No transpose) */
/* = 'T': A**T * X = B (Transpose) */
/* = 'C': A**H * X = B (Conjugate Transpose = Transpose) */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* KL (input) INTEGER */
/* The number of subdiagonals within the band of A. KL >= 0. */
/* KU (input) INTEGER */
/* The number of superdiagonals within the band of A. KU >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrices B and X. NRHS >= 0. */
/* AB (input/output) DOUBLE PRECISION array, dimension (LDAB,N) */
/* On entry, the matrix A in band storage, in rows 1 to KL+KU+1. */
/* The j-th column of A is stored in the j-th column of the */
/* array AB as follows: */
/* AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl) */
/* If FACT = 'F' and EQUED is not 'N', then AB must have been */
/* equilibrated by the scaling factors in R and/or C. AB is not */
/* modified if FACT = 'F' or 'N', or if FACT = 'E' and */
/* EQUED = 'N' on exit. */
/* On exit, if EQUED .ne. 'N', A is scaled as follows: */
/* EQUED = 'R': A := diag(R) * A */
/* EQUED = 'C': A := A * diag(C) */
/* EQUED = 'B': A := diag(R) * A * diag(C). */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* AFB (input or output) DOUBLE PRECISION array, dimension (LDAFB,N) */
/* If FACT = 'F', then AFB is an input argument and on entry */
/* contains details of the LU factorization of the band matrix */
/* A, as computed by DGBTRF. U is stored as an upper triangular */
/* band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, */
/* and the multipliers used during the factorization are stored */
/* in rows KL+KU+2 to 2*KL+KU+1. If EQUED .ne. 'N', then AFB is */
/* the factored form of the equilibrated matrix A. */
/* If FACT = 'N', then AF is an output argument and on exit */
/* returns the factors L and U from the factorization A = P*L*U */
/* of the original matrix A. */
/* If FACT = 'E', then AF is an output argument and on exit */
/* returns the factors L and U from the factorization A = P*L*U */
/* of the equilibrated matrix A (see the description of A for */
/* the form of the equilibrated matrix). */
/* LDAFB (input) INTEGER */
/* The leading dimension of the array AFB. LDAFB >= 2*KL+KU+1. */
/* IPIV (input or output) INTEGER array, dimension (N) */
/* If FACT = 'F', then IPIV is an input argument and on entry */
/* contains the pivot indices from the factorization A = P*L*U */
/* as computed by DGETRF; row i of the matrix was interchanged */
/* with row IPIV(i). */
/* If FACT = 'N', then IPIV is an output argument and on exit */
/* contains the pivot indices from the factorization A = P*L*U */
/* of the original matrix A. */
/* If FACT = 'E', then IPIV is an output argument and on exit */
/* contains the pivot indices from the factorization A = P*L*U */
/* of the equilibrated matrix A. */
/* EQUED (input or output) CHARACTER*1 */
/* Specifies the form of equilibration that was done. */
/* = 'N': No equilibration (always true if FACT = 'N'). */
/* = 'R': Row equilibration, i.e., A has been premultiplied by */
/* diag(R). */
/* = 'C': Column equilibration, i.e., A has been postmultiplied */
/* by diag(C). */
/* = 'B': Both row and column equilibration, i.e., A has been */
/* replaced by diag(R) * A * diag(C). */
/* EQUED is an input argument if FACT = 'F'; otherwise, it is an */
/* output argument. */
/* R (input or output) DOUBLE PRECISION array, dimension (N) */
/* The row scale factors for A. If EQUED = 'R' or 'B', A is */
/* multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
/* is not accessed. R is an input argument if FACT = 'F'; */
/* otherwise, R is an output argument. If FACT = 'F' and */
/* EQUED = 'R' or 'B', each element of R must be positive. */
/* If R is output, each element of R is a power of the radix. */
/* If R is input, each element of R should be a power of the radix */
/* to ensure a reliable solution and error estimates. Scaling by */
/* powers of the radix does not cause rounding errors unless the */
/* result underflows or overflows. Rounding errors during scaling */
/* lead to refining with a matrix that is not equivalent to the */
/* input matrix, producing error estimates that may not be */
/* reliable. */
/* C (input or output) DOUBLE PRECISION array, dimension (N) */
/* The column scale factors for A. If EQUED = 'C' or 'B', A is */
/* multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
/* is not accessed. C is an input argument if FACT = 'F'; */
/* otherwise, C is an output argument. If FACT = 'F' and */
/* EQUED = 'C' or 'B', each element of C must be positive. */
/* If C is output, each element of C is a power of the radix. */
/* If C is input, each element of C should be a power of the radix */
/* to ensure a reliable solution and error estimates. Scaling by */
/* powers of the radix does not cause rounding errors unless the */
/* result underflows or overflows. Rounding errors during scaling */
/* lead to refining with a matrix that is not equivalent to the */
/* input matrix, producing error estimates that may not be */
/* reliable. */
/* B (input/output) DOUBLE PRECISION array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, */
/* if EQUED = 'N', B is not modified; */
/* if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by */
/* diag(R)*B; */
/* if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is */
/* overwritten by diag(C)*B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* X (output) DOUBLE PRECISION array, dimension (LDX,NRHS) */
/* If INFO = 0, the N-by-NRHS solution matrix X to the original */
/* system of equations. Note that A and B are modified on exit */
/* if EQUED .ne. 'N', and the solution to the equilibrated system is */
/* inv(diag(C))*X if TRANS = 'N' and EQUED = 'C' or 'B', or */
/* inv(diag(R))*X if TRANS = 'T' or 'C' and EQUED = 'R' or 'B'. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X. LDX >= max(1,N). */
/* RCOND (output) DOUBLE PRECISION */
/* Reciprocal scaled condition number. This is an estimate of the */
/* reciprocal Skeel condition number of the matrix A after */
/* equilibration (if done). If this is less than the machine */
/* precision (in particular, if it is zero), the matrix is singular */
/* to working precision. Note that the error may still be small even */
/* if this number is very small and the matrix appears ill- */
/* conditioned. */
/* RPVGRW (output) DOUBLE PRECISION */
/* Reciprocal pivot growth. On exit, this contains the reciprocal */
/* pivot growth factor norm(A)/norm(U). The "max absolute element" */
/* norm is used. If this is much less than 1, then the stability of */
/* the LU factorization of the (equilibrated) matrix A could be poor. */
/* This also means that the solution X, estimated condition numbers, */
/* and error bounds could be unreliable. If factorization fails with */
/* 0<INFO<=N, then this contains the reciprocal pivot growth factor */
/* for the leading INFO columns of A. In DGESVX, this quantity is */
/* returned in WORK(1). */
/* BERR (output) DOUBLE PRECISION array, dimension (NRHS) */
/* Componentwise relative backward error. This is the */
/* componentwise relative backward error of each solution vector X(j) */
/* (i.e., the smallest relative change in any element of A or B that */
/* makes X(j) an exact solution). */
/* N_ERR_BNDS (input) INTEGER */
/* Number of error bounds to return for each right hand side */
/* and each type (normwise or componentwise). See ERR_BNDS_NORM and */
/* ERR_BNDS_COMP below. */
/* ERR_BNDS_NORM (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* normwise relative error, which is defined as follows: */
/* Normwise relative error in the ith solution vector: */
/* max_j (abs(XTRUE(j,i) - X(j,i))) */
/* ------------------------------ */
/* max_j abs(X(j,i)) */
/* The array is indexed by the type of error information as described */
/* below. There currently are up to three pieces of information */
/* returned. */
/* The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_NORM(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * dlamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated normwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * dlamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*A, where S scales each row by a power of the */
/* radix so all absolute row sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* ERR_BNDS_COMP (output) DOUBLE PRECISION array, dimension (NRHS, N_ERR_BNDS) */
/* For each right-hand side, this array contains information about */
/* various error bounds and condition numbers corresponding to the */
/* componentwise relative error, which is defined as follows: */
/* Componentwise relative error in the ith solution vector: */
/* abs(XTRUE(j,i) - X(j,i)) */
/* max_j ---------------------- */
/* abs(X(j,i)) */
/* The array is indexed by the right-hand side i (on which the */
/* componentwise relative error depends), and the type of error */
/* information as described below. There currently are up to three */
/* pieces of information returned for each right-hand side. If */
/* componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
/* ERR_BNDS_COMP is not accessed. If N_ERR_BNDS .LT. 3, then at most */
/* the first (:,N_ERR_BNDS) entries are returned. */
/* The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
/* right-hand side. */
/* The second index in ERR_BNDS_COMP(:,err) contains the following */
/* three fields: */
/* err = 1 "Trust/don't trust" boolean. Trust the answer if the */
/* reciprocal condition number is less than the threshold */
/* sqrt(n) * dlamch('Epsilon'). */
/* err = 2 "Guaranteed" error bound: The estimated forward error, */
/* almost certainly within a factor of 10 of the true error */
/* so long as the next entry is greater than the threshold */
/* sqrt(n) * dlamch('Epsilon'). This error bound should only */
/* be trusted if the previous boolean is true. */
/* err = 3 Reciprocal condition number: Estimated componentwise */
/* reciprocal condition number. Compared with the threshold */
/* sqrt(n) * dlamch('Epsilon') to determine if the error */
/* estimate is "guaranteed". These reciprocal condition */
/* numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
/* appropriately scaled matrix Z. */
/* Let Z = S*(A*diag(x)), where x is the solution for the */
/* current right-hand side and S scales each row of */
/* A*diag(x) by a power of the radix so all absolute row */
/* sums of Z are approximately 1. */
/* See Lapack Working Note 165 for further details and extra */
/* cautions. */
/* NPARAMS (input) INTEGER */
/* Specifies the number of parameters set in PARAMS. If .LE. 0, the */
/* PARAMS array is never referenced and default values are used. */
/* PARAMS (input / output) DOUBLE PRECISION array, dimension NPARAMS */
/* Specifies algorithm parameters. If an entry is .LT. 0.0, then */
/* that entry will be filled with default value used for that */
/* parameter. Only positions up to NPARAMS are accessed; defaults */
/* are used for higher-numbered parameters. */
/* PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
/* refinement or not. */
/* Default: 1.0D+0 */
/* = 0.0 : No refinement is performed, and no error bounds are */
/* computed. */
/* = 1.0 : Use the extra-precise refinement algorithm. */
/* (other values are reserved for future use) */
/* PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
/* computations allowed for refinement. */
/* Default: 10 */
/* Aggressive: Set to 100 to permit convergence using approximate */
/* factorizations or factorizations other than LU. If */
/* the factorization uses a technique other than */
/* Gaussian elimination, the guarantees in */
/* err_bnds_norm and err_bnds_comp may no longer be */
/* trustworthy. */
/* PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
/* will attempt to find a solution with small componentwise */
/* relative error in the double-precision algorithm. Positive */
/* is true, 0.0 is false. */
/* Default: 1.0 (attempt componentwise convergence) */
/* WORK (workspace) DOUBLE PRECISION array, dimension (4*N) */
/* IWORK (workspace) INTEGER array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: Successful exit. The solution to every right-hand side is */
/* guaranteed. */
/* < 0: If INFO = -i, the i-th argument had an illegal value */
/* > 0 and <= N: U(INFO,INFO) is exactly zero. The factorization */
/* has been completed, but the factor U is exactly singular, so */
/* the solution and error bounds could not be computed. RCOND = 0 */
/* is returned. */
/* = N+J: The solution corresponding to the Jth right-hand side is */
/* not guaranteed. The solutions corresponding to other right- */
/* hand sides K with K > J may not be guaranteed as well, but */
/* only the first such right-hand side is reported. If a small */
/* componentwise error is not requested (PARAMS(3) = 0.0) then */
/* the Jth right-hand side is the first with a normwise error */
/* bound that is not guaranteed (the smallest J such */
/* that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
/* the Jth right-hand side is the first with either a normwise or */
/* componentwise error bound that is not guaranteed (the smallest */
/* J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
/* ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
/* ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
/* about all of the right-hand sides check ERR_BNDS_NORM or */
/* ERR_BNDS_COMP. */
/* ================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
err_bnds_comp_dim1 = *nrhs;
err_bnds_comp_offset = 1 + err_bnds_comp_dim1;
err_bnds_comp__ -= err_bnds_comp_offset;
err_bnds_norm_dim1 = *nrhs;
err_bnds_norm_offset = 1 + err_bnds_norm_dim1;
err_bnds_norm__ -= err_bnds_norm_offset;
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
afb_dim1 = *ldafb;
afb_offset = 1 + afb_dim1;
afb -= afb_offset;
--ipiv;
--r__;
--c__;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--berr;
--params;
--work;
--iwork;
/* Function Body */
*info = 0;
nofact = lsame_(fact, "N");
equil = lsame_(fact, "E");
notran = lsame_(trans, "N");
smlnum = dlamch_("Safe minimum");
bignum = 1. / smlnum;
if (nofact || equil) {
*(unsigned char *)equed = 'N';
rowequ = FALSE_;
colequ = FALSE_;
} else {
rowequ = lsame_(equed, "R") || lsame_(equed,
"B");
colequ = lsame_(equed, "C") || lsame_(equed,
"B");
}
/* Default is failure. If an input parameter is wrong or */
/* factorization fails, make everything look horrible. Only the */
/* pivot growth is set here, the rest is initialized in DGBRFSX. */
*rpvgrw = 0.;
/* Test the input parameters. PARAMS is not tested until DGBRFSX. */
if (! nofact && ! equil && ! lsame_(fact, "F")) {
*info = -1;
} else if (! notran && ! lsame_(trans, "T") && !
lsame_(trans, "C")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*kl < 0) {
*info = -4;
} else if (*ku < 0) {
*info = -5;
} else if (*nrhs < 0) {
*info = -6;
} else if (*ldab < *kl + *ku + 1) {
*info = -8;
} else if (*ldafb < (*kl << 1) + *ku + 1) {
*info = -10;
} else if (lsame_(fact, "F") && ! (rowequ || colequ
|| lsame_(equed, "N"))) {
*info = -12;
} else {
if (rowequ) {
rcmin = bignum;
rcmax = 0.;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
d__1 = rcmin, d__2 = r__[j];
rcmin = min(d__1,d__2);
/* Computing MAX */
d__1 = rcmax, d__2 = r__[j];
rcmax = max(d__1,d__2);
/* L10: */
}
if (rcmin <= 0.) {
*info = -13;
} else if (*n > 0) {
rowcnd = max(rcmin,smlnum) / min(rcmax,bignum);
} else {
rowcnd = 1.;
}
}
if (colequ && *info == 0) {
rcmin = bignum;
rcmax = 0.;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
d__1 = rcmin, d__2 = c__[j];
rcmin = min(d__1,d__2);
/* Computing MAX */
d__1 = rcmax, d__2 = c__[j];
rcmax = max(d__1,d__2);
/* L20: */
}
if (rcmin <= 0.) {
*info = -14;
} else if (*n > 0) {
colcnd = max(rcmin,smlnum) / min(rcmax,bignum);
} else {
colcnd = 1.;
}
}
if (*info == 0) {
if (*ldb < max(1,*n)) {
*info = -15;
} else if (*ldx < max(1,*n)) {
*info = -16;
}
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("DGBSVXX", &i__1);
return 0;
}
if (equil) {
/* Compute row and column scalings to equilibrate the matrix A. */
dgbequb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
rowcnd, &colcnd, &amax, &infequ);
if (infequ == 0) {
/* Equilibrate the matrix. */
dlaqgb_(n, n, kl, ku, &ab[ab_offset], ldab, &r__[1], &c__[1], &
rowcnd, &colcnd, &amax, equed);
rowequ = lsame_(equed, "R") || lsame_(equed,
"B");
colequ = lsame_(equed, "C") || lsame_(equed,
"B");
}
/* If the scaling factors are not applied, set them to 1.0. */
if (! rowequ) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
r__[j] = 1.;
}
}
if (! colequ) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
c__[j] = 1.;
}
}
}
/* Scale the right hand side. */
if (notran) {
if (rowequ) {
dlascl2_(n, nrhs, &r__[1], &b[b_offset], ldb);
}
} else {
if (colequ) {
dlascl2_(n, nrhs, &c__[1], &b[b_offset], ldb);
}
}
if (nofact || equil) {
/* Compute the LU factorization of A. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = (*kl << 1) + *ku + 1;
for (i__ = *kl + 1; i__ <= i__2; ++i__) {
afb[i__ + j * afb_dim1] = ab[i__ - *kl + j * ab_dim1];
/* L30: */
}
/* L40: */
}
dgbtrf_(n, n, kl, ku, &afb[afb_offset], ldafb, &ipiv[1], info);
/* Return if INFO is non-zero. */
if (*info > 0) {
/* Pivot in column INFO is exactly 0 */
/* Compute the reciprocal pivot growth factor of the */
/* leading rank-deficient INFO columns of A. */
*rpvgrw = dla_gbrpvgrw__(n, kl, ku, info, &ab[ab_offset], ldab, &
afb[afb_offset], ldafb);
return 0;
}
}
/* Compute the reciprocal pivot growth factor RPVGRW. */
*rpvgrw = dla_gbrpvgrw__(n, kl, ku, n, &ab[ab_offset], ldab, &afb[
afb_offset], ldafb);
/* Compute the solution matrix X. */
dlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
dgbtrs_(trans, n, kl, ku, nrhs, &afb[afb_offset], ldafb, &ipiv[1], &x[
x_offset], ldx, info);
/* Use iterative refinement to improve the computed solution and */
/* compute error bounds and backward error estimates for it. */
dgbrfsx_(trans, equed, n, kl, ku, nrhs, &ab[ab_offset], ldab, &afb[
afb_offset], ldafb, &ipiv[1], &r__[1], &c__[1], &b[b_offset], ldb,
&x[x_offset], ldx, rcond, &berr[1], n_err_bnds__, &
err_bnds_norm__[err_bnds_norm_offset], &err_bnds_comp__[
err_bnds_comp_offset], nparams, ¶ms[1], &work[1], &iwork[1],
info);
/* Scale solutions. */
if (colequ && notran) {
dlascl2_(n, nrhs, &c__[1], &x[x_offset], ldx);
} else if (rowequ && ! notran) {
dlascl2_(n, nrhs, &r__[1], &x[x_offset], ldx);
}
return 0;
/* End of DGBSVXX */
} /* dgbsvxx_ */