/* ctrttf.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int ctrttf_(char *transr, char *uplo, integer *n, complex *a,
integer *lda, complex *arf, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
complex q__1;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, k, l, n1, n2, ij, nt, nx2, np1x2;
logical normaltransr;
extern logical lsame_(char *, char *);
logical lower;
extern /* Subroutine */ int xerbla_(char *, integer *);
logical nisodd;
/* -- LAPACK routine (version 3.2) -- */
/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
/* -- November 2008 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CTRTTF copies a triangular matrix A from standard full format (TR) */
/* to rectangular full packed format (TF) . */
/* Arguments */
/* ========= */
/* TRANSR (input) CHARACTER */
/* = 'N': ARF in Normal mode is wanted; */
/* = 'C': ARF in Conjugate Transpose mode is wanted; */
/* UPLO (input) CHARACTER */
/* = 'U': A is upper triangular; */
/* = 'L': A is lower triangular. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) COMPLEX array, dimension ( LDA, N ) */
/* On entry, the triangular matrix A. If UPLO = 'U', the */
/* leading N-by-N upper triangular part of the array A contains */
/* the upper triangular matrix, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading N-by-N lower triangular part of the array A contains */
/* the lower triangular matrix, and the strictly upper */
/* triangular part of A is not referenced. */
/* LDA (input) INTEGER */
/* The leading dimension of the matrix A. LDA >= max(1,N). */
/* ARF (output) COMPLEX*16 array, dimension ( N*(N+1)/2 ), */
/* On exit, the upper or lower triangular matrix A stored in */
/* RFP format. For a further discussion see Notes below. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Notes */
/* ===== */
/* We first consider Standard Packed Format when N is even. */
/* We give an example where N = 6. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 05 00 */
/* 11 12 13 14 15 10 11 */
/* 22 23 24 25 20 21 22 */
/* 33 34 35 30 31 32 33 */
/* 44 45 40 41 42 43 44 */
/* 55 50 51 52 53 54 55 */
/* Let TRANSR = `N'. RFP holds AP as follows: */
/* For UPLO = `U' the upper trapezoid A(0:5,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/* conjugate-transpose of the first three columns of AP upper. */
/* For UPLO = `L' the lower trapezoid A(1:6,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/* conjugate-transpose of the last three columns of AP lower. */
/* To denote conjugate we place -- above the element. This covers the */
/* case N even and TRANSR = `N'. */
/* RFP A RFP A */
/* -- -- -- */
/* 03 04 05 33 43 53 */
/* -- -- */
/* 13 14 15 00 44 54 */
/* -- */
/* 23 24 25 10 11 55 */
/* 33 34 35 20 21 22 */
/* -- */
/* 00 44 45 30 31 32 */
/* -- -- */
/* 01 11 55 40 41 42 */
/* -- -- -- */
/* 02 12 22 50 51 52 */
/* Now let TRANSR = `C'. RFP A in both UPLO cases is just the conjugate- */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* -- -- -- -- -- -- -- -- -- -- */
/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
/* -- -- -- -- -- -- -- -- -- -- */
/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
/* -- -- -- -- -- -- -- -- -- -- */
/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
/* We next consider Standard Packed Format when N is odd. */
/* We give an example where N = 5. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 00 */
/* 11 12 13 14 10 11 */
/* 22 23 24 20 21 22 */
/* 33 34 30 31 32 33 */
/* 44 40 41 42 43 44 */
/* Let TRANSR = `N'. RFP holds AP as follows: */
/* For UPLO = `U' the upper trapezoid A(0:4,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/* conjugate-transpose of the first two columns of AP upper. */
/* For UPLO = `L' the lower trapezoid A(0:4,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/* conjugate-transpose of the last two columns of AP lower. */
/* To denote conjugate we place -- above the element. This covers the */
/* case N odd and TRANSR = `N'. */
/* RFP A RFP A */
/* -- -- */
/* 02 03 04 00 33 43 */
/* -- */
/* 12 13 14 10 11 44 */
/* 22 23 24 20 21 22 */
/* -- */
/* 00 33 34 30 31 32 */
/* -- -- */
/* 01 11 44 40 41 42 */
/* Now let TRANSR = `C'. RFP A in both UPLO cases is just the conjugate- */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* -- -- -- -- -- -- -- -- -- */
/* 02 12 22 00 01 00 10 20 30 40 50 */
/* -- -- -- -- -- -- -- -- -- */
/* 03 13 23 33 11 33 11 21 31 41 51 */
/* -- -- -- -- -- -- -- -- -- */
/* 04 14 24 34 44 43 44 22 32 42 52 */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda - 1 - 0 + 1;
a_offset = 0 + a_dim1 * 0;
a -= a_offset;
/* Function Body */
*info = 0;
normaltransr = lsame_(transr, "N");
lower = lsame_(uplo, "L");
if (! normaltransr && ! lsame_(transr, "C")) {
*info = -1;
} else if (! lower && ! lsame_(uplo, "U")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTRTTF", &i__1);
return 0;
}
/* Quick return if possible */
if (*n <= 1) {
if (*n == 1) {
if (normaltransr) {
arf[0].r = a[0].r, arf[0].i = a[0].i;
} else {
r_cnjg(&q__1, a);
arf[0].r = q__1.r, arf[0].i = q__1.i;
}
}
return 0;
}
/* Size of array ARF(1:2,0:nt-1) */
nt = *n * (*n + 1) / 2;
/* set N1 and N2 depending on LOWER: for N even N1=N2=K */
if (lower) {
n2 = *n / 2;
n1 = *n - n2;
} else {
n1 = *n / 2;
n2 = *n - n1;
}
/* If N is odd, set NISODD = .TRUE., LDA=N+1 and A is (N+1)--by--K2. */
/* If N is even, set K = N/2 and NISODD = .FALSE., LDA=N and A is */
/* N--by--(N+1)/2. */
if (*n % 2 == 0) {
k = *n / 2;
nisodd = FALSE_;
if (! lower) {
np1x2 = *n + *n + 2;
}
} else {
nisodd = TRUE_;
if (! lower) {
nx2 = *n + *n;
}
}
if (nisodd) {
/* N is odd */
if (normaltransr) {
/* N is odd and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda=n */
ij = 0;
i__1 = n2;
for (j = 0; j <= i__1; ++j) {
i__2 = n2 + j;
for (i__ = n1; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[n2 + j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
}
} else {
/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
/* T1 -> a(n2), T2 -> a(n1), S -> a(0); lda=n */
ij = nt - *n;
i__1 = n1;
for (j = *n - 1; j >= i__1; --j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
i__2 = n1 - 1;
for (l = j - n1; l <= i__2; ++l) {
i__3 = ij;
r_cnjg(&q__1, &a[j - n1 + l * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
ij -= nx2;
}
}
} else {
/* N is odd and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is odd */
/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
/* T1 -> A(0+0) , T2 -> A(1+0) , S -> A(0+n1*n1); lda=n1 */
ij = 0;
i__1 = n2 - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = n1 + j; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + (n1 + j) * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
}
i__1 = *n - 1;
for (j = n2; j <= i__1; ++j) {
i__2 = n1 - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is odd */
/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
/* T1 -> A(n2*n2), T2 -> A(n1*n2), S -> A(0); lda=n2 */
ij = 0;
i__1 = n1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = n1; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
i__1 = n1 - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
i__2 = *n - 1;
for (l = n2 + j; l <= i__2; ++l) {
i__3 = ij;
r_cnjg(&q__1, &a[n2 + j + l * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
}
}
} else {
/* N is even */
if (normaltransr) {
/* N is even and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
/* T1 -> a(1), T2 -> a(0), S -> a(k+1); lda=n+1 */
ij = 0;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = k + j;
for (i__ = k; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[k + j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
}
} else {
/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
/* T1 -> a(k+1), T2 -> a(k), S -> a(0); lda=n+1 */
ij = nt - *n - 1;
i__1 = k;
for (j = *n - 1; j >= i__1; --j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
i__2 = k - 1;
for (l = j - k; l <= i__2; ++l) {
i__3 = ij;
r_cnjg(&q__1, &a[j - k + l * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
ij -= np1x2;
}
}
} else {
/* N is even and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is even (see paper, A=B) */
/* T1 -> A(0,1) , T2 -> A(0,0) , S -> A(0,k+1) : */
/* T1 -> A(0+k) , T2 -> A(0+0) , S -> A(0+k*(k+1)); lda=k */
ij = 0;
j = k;
i__1 = *n - 1;
for (i__ = k; i__ <= i__1; ++i__) {
i__2 = ij;
i__3 = i__ + j * a_dim1;
arf[i__2].r = a[i__3].r, arf[i__2].i = a[i__3].i;
++ij;
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
i__2 = *n - 1;
for (i__ = k + 1 + j; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + (k + 1 + j) * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
}
i__1 = *n - 1;
for (j = k - 1; j <= i__1; ++j) {
i__2 = k - 1;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is even (see paper, A=B) */
/* T1 -> A(0,k+1) , T2 -> A(0,k) , S -> A(0,0) */
/* T1 -> A(0+k*(k+1)) , T2 -> A(0+k*k) , S -> A(0+0)); lda=k */
ij = 0;
i__1 = k;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = k; i__ <= i__2; ++i__) {
i__3 = ij;
r_cnjg(&q__1, &a[j + i__ * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
i__1 = k - 2;
for (j = 0; j <= i__1; ++j) {
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ij;
i__4 = i__ + j * a_dim1;
arf[i__3].r = a[i__4].r, arf[i__3].i = a[i__4].i;
++ij;
}
i__2 = *n - 1;
for (l = k + 1 + j; l <= i__2; ++l) {
i__3 = ij;
r_cnjg(&q__1, &a[k + 1 + j + l * a_dim1]);
arf[i__3].r = q__1.r, arf[i__3].i = q__1.i;
++ij;
}
}
/* Note that here J = K-1 */
i__1 = j;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = ij;
i__3 = i__ + j * a_dim1;
arf[i__2].r = a[i__3].r, arf[i__2].i = a[i__3].i;
++ij;
}
}
}
}
return 0;
/* End of CTRTTF */
} /* ctrttf_ */