/* ctfttp.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int ctfttp_(char *transr, char *uplo, integer *n, complex *
arf, complex *ap, integer *info)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4;
complex q__1;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, k, n1, n2, ij, jp, js, nt, lda, ijp;
logical normaltransr;
extern logical lsame_(char *, char *);
logical lower;
extern /* Subroutine */ int xerbla_(char *, integer *);
logical nisodd;
/* -- LAPACK routine (version 3.2) -- */
/* -- Contributed by Fred Gustavson of the IBM Watson Research Center -- */
/* -- November 2008 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CTFTTP copies a triangular matrix A from rectangular full packed */
/* format (TF) to standard packed format (TP). */
/* Arguments */
/* ========= */
/* TRANSR (input) CHARACTER */
/* = 'N': ARF is in Normal format; */
/* = 'C': ARF is in Conjugate-transpose format; */
/* UPLO (input) CHARACTER */
/* = 'U': A is upper triangular; */
/* = 'L': A is lower triangular. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* ARF (input) COMPLEX array, dimension ( N*(N+1)/2 ), */
/* On entry, the upper or lower triangular matrix A stored in */
/* RFP format. For a further discussion see Notes below. */
/* AP (output) COMPLEX array, dimension ( N*(N+1)/2 ), */
/* On exit, the upper or lower triangular matrix A, packed */
/* columnwise in a linear array. The j-th column of A is stored */
/* in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* Notes: */
/* ====== */
/* We first consider Standard Packed Format when N is even. */
/* We give an example where N = 6. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 05 00 */
/* 11 12 13 14 15 10 11 */
/* 22 23 24 25 20 21 22 */
/* 33 34 35 30 31 32 33 */
/* 44 45 40 41 42 43 44 */
/* 55 50 51 52 53 54 55 */
/* Let TRANSR = 'N'. RFP holds AP as follows: */
/* For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
/* conjugate-transpose of the first three columns of AP upper. */
/* For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
/* conjugate-transpose of the last three columns of AP lower. */
/* To denote conjugate we place -- above the element. This covers the */
/* case N even and TRANSR = 'N'. */
/* RFP A RFP A */
/* -- -- -- */
/* 03 04 05 33 43 53 */
/* -- -- */
/* 13 14 15 00 44 54 */
/* -- */
/* 23 24 25 10 11 55 */
/* 33 34 35 20 21 22 */
/* -- */
/* 00 44 45 30 31 32 */
/* -- -- */
/* 01 11 55 40 41 42 */
/* -- -- -- */
/* 02 12 22 50 51 52 */
/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* -- -- -- -- -- -- -- -- -- -- */
/* 03 13 23 33 00 01 02 33 00 10 20 30 40 50 */
/* -- -- -- -- -- -- -- -- -- -- */
/* 04 14 24 34 44 11 12 43 44 11 21 31 41 51 */
/* -- -- -- -- -- -- -- -- -- -- */
/* 05 15 25 35 45 55 22 53 54 55 22 32 42 52 */
/* We next consider Standard Packed Format when N is odd. */
/* We give an example where N = 5. */
/* AP is Upper AP is Lower */
/* 00 01 02 03 04 00 */
/* 11 12 13 14 10 11 */
/* 22 23 24 20 21 22 */
/* 33 34 30 31 32 33 */
/* 44 40 41 42 43 44 */
/* Let TRANSR = 'N'. RFP holds AP as follows: */
/* For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
/* three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
/* conjugate-transpose of the first two columns of AP upper. */
/* For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
/* three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
/* conjugate-transpose of the last two columns of AP lower. */
/* To denote conjugate we place -- above the element. This covers the */
/* case N odd and TRANSR = 'N'. */
/* RFP A RFP A */
/* -- -- */
/* 02 03 04 00 33 43 */
/* -- */
/* 12 13 14 10 11 44 */
/* 22 23 24 20 21 22 */
/* -- */
/* 00 33 34 30 31 32 */
/* -- -- */
/* 01 11 44 40 41 42 */
/* Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
/* transpose of RFP A above. One therefore gets: */
/* RFP A RFP A */
/* -- -- -- -- -- -- -- -- -- */
/* 02 12 22 00 01 00 10 20 30 40 50 */
/* -- -- -- -- -- -- -- -- -- */
/* 03 13 23 33 11 33 11 21 31 41 51 */
/* -- -- -- -- -- -- -- -- -- */
/* 04 14 24 34 44 43 44 22 32 42 52 */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
*info = 0;
normaltransr = lsame_(transr, "N");
lower = lsame_(uplo, "L");
if (! normaltransr && ! lsame_(transr, "C")) {
*info = -1;
} else if (! lower && ! lsame_(uplo, "U")) {
*info = -2;
} else if (*n < 0) {
*info = -3;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CTFTTP", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
if (*n == 1) {
if (normaltransr) {
ap[0].r = arf[0].r, ap[0].i = arf[0].i;
} else {
r_cnjg(&q__1, arf);
ap[0].r = q__1.r, ap[0].i = q__1.i;
}
return 0;
}
/* Size of array ARF(0:NT-1) */
nt = *n * (*n + 1) / 2;
/* Set N1 and N2 depending on LOWER */
if (lower) {
n2 = *n / 2;
n1 = *n - n2;
} else {
n1 = *n / 2;
n2 = *n - n1;
}
/* If N is odd, set NISODD = .TRUE. */
/* If N is even, set K = N/2 and NISODD = .FALSE. */
/* set lda of ARF^C; ARF^C is (0:(N+1)/2-1,0:N-noe) */
/* where noe = 0 if n is even, noe = 1 if n is odd */
if (*n % 2 == 0) {
k = *n / 2;
nisodd = FALSE_;
lda = *n + 1;
} else {
nisodd = TRUE_;
lda = *n;
}
/* ARF^C has lda rows and n+1-noe cols */
if (! normaltransr) {
lda = (*n + 1) / 2;
}
/* start execution: there are eight cases */
if (nisodd) {
/* N is odd */
if (normaltransr) {
/* N is odd and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL and N is odd ( a(0:n-1,0:n1-1) ) */
/* T1 -> a(0,0), T2 -> a(0,1), S -> a(n1,0) */
/* T1 -> a(0), T2 -> a(n), S -> a(n1); lda = n */
ijp = 0;
jp = 0;
i__1 = n2;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
ij = i__ + jp;
i__3 = ijp;
i__4 = ij;
ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
++ijp;
}
jp += lda;
}
i__1 = n2 - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = n2;
for (j = i__ + 1; j <= i__2; ++j) {
ij = i__ + j * lda;
i__3 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++ijp;
}
}
} else {
/* SRPA for UPPER, NORMAL and N is odd ( a(0:n-1,0:n2-1) */
/* T1 -> a(n1+1,0), T2 -> a(n1,0), S -> a(0,0) */
/* T1 -> a(n2), T2 -> a(n1), S -> a(0) */
ijp = 0;
i__1 = n1 - 1;
for (j = 0; j <= i__1; ++j) {
ij = n2 + j;
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++ijp;
ij += lda;
}
}
js = 0;
i__1 = *n - 1;
for (j = n1; j <= i__1; ++j) {
ij = js;
i__2 = js + j;
for (ij = js; ij <= i__2; ++ij) {
i__3 = ijp;
i__4 = ij;
ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
++ijp;
}
js += lda;
}
}
} else {
/* N is odd and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is odd */
/* T1 -> A(0,0) , T2 -> A(1,0) , S -> A(0,n1) */
/* T1 -> a(0+0) , T2 -> a(1+0) , S -> a(0+n1*n1); lda=n1 */
ijp = 0;
i__1 = n2;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = *n * lda - 1;
i__3 = lda;
for (ij = i__ * (lda + 1); i__3 < 0 ? ij >= i__2 : ij <=
i__2; ij += i__3) {
i__4 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__4].r = q__1.r, ap[i__4].i = q__1.i;
++ijp;
}
}
js = 1;
i__1 = n2 - 1;
for (j = 0; j <= i__1; ++j) {
i__3 = js + n2 - j - 1;
for (ij = js; ij <= i__3; ++ij) {
i__2 = ijp;
i__4 = ij;
ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
++ijp;
}
js = js + lda + 1;
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is odd */
/* T1 -> A(0,n1+1), T2 -> A(0,n1), S -> A(0,0) */
/* T1 -> a(n2*n2), T2 -> a(n1*n2), S -> a(0); lda = n2 */
ijp = 0;
js = n2 * lda;
i__1 = n1 - 1;
for (j = 0; j <= i__1; ++j) {
i__3 = js + j;
for (ij = js; ij <= i__3; ++ij) {
i__2 = ijp;
i__4 = ij;
ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
++ijp;
}
js += lda;
}
i__1 = n1;
for (i__ = 0; i__ <= i__1; ++i__) {
i__3 = i__ + (n1 + i__) * lda;
i__2 = lda;
for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
i__2) {
i__4 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__4].r = q__1.r, ap[i__4].i = q__1.i;
++ijp;
}
}
}
}
} else {
/* N is even */
if (normaltransr) {
/* N is even and TRANSR = 'N' */
if (lower) {
/* SRPA for LOWER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(1,0), T2 -> a(0,0), S -> a(k+1,0) */
/* T1 -> a(1), T2 -> a(0), S -> a(k+1) */
ijp = 0;
jp = 0;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__2 = *n - 1;
for (i__ = j; i__ <= i__2; ++i__) {
ij = i__ + 1 + jp;
i__3 = ijp;
i__4 = ij;
ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
++ijp;
}
jp += lda;
}
i__1 = k - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = k - 1;
for (j = i__; j <= i__2; ++j) {
ij = i__ + j * lda;
i__3 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++ijp;
}
}
} else {
/* SRPA for UPPER, NORMAL, and N is even ( a(0:n,0:k-1) ) */
/* T1 -> a(k+1,0) , T2 -> a(k,0), S -> a(0,0) */
/* T1 -> a(k+1), T2 -> a(k), S -> a(0) */
ijp = 0;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
ij = k + 1 + j;
i__2 = j;
for (i__ = 0; i__ <= i__2; ++i__) {
i__3 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++ijp;
ij += lda;
}
}
js = 0;
i__1 = *n - 1;
for (j = k; j <= i__1; ++j) {
ij = js;
i__2 = js + j;
for (ij = js; ij <= i__2; ++ij) {
i__3 = ijp;
i__4 = ij;
ap[i__3].r = arf[i__4].r, ap[i__3].i = arf[i__4].i;
++ijp;
}
js += lda;
}
}
} else {
/* N is even and TRANSR = 'C' */
if (lower) {
/* SRPA for LOWER, TRANSPOSE and N is even (see paper) */
/* T1 -> B(0,1), T2 -> B(0,0), S -> B(0,k+1) */
/* T1 -> a(0+k), T2 -> a(0+0), S -> a(0+k*(k+1)); lda=k */
ijp = 0;
i__1 = k - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
i__2 = (*n + 1) * lda - 1;
i__3 = lda;
for (ij = i__ + (i__ + 1) * lda; i__3 < 0 ? ij >= i__2 :
ij <= i__2; ij += i__3) {
i__4 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__4].r = q__1.r, ap[i__4].i = q__1.i;
++ijp;
}
}
js = 0;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__3 = js + k - j - 1;
for (ij = js; ij <= i__3; ++ij) {
i__2 = ijp;
i__4 = ij;
ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
++ijp;
}
js = js + lda + 1;
}
} else {
/* SRPA for UPPER, TRANSPOSE and N is even (see paper) */
/* T1 -> B(0,k+1), T2 -> B(0,k), S -> B(0,0) */
/* T1 -> a(0+k*(k+1)), T2 -> a(0+k*k), S -> a(0+0)); lda=k */
ijp = 0;
js = (k + 1) * lda;
i__1 = k - 1;
for (j = 0; j <= i__1; ++j) {
i__3 = js + j;
for (ij = js; ij <= i__3; ++ij) {
i__2 = ijp;
i__4 = ij;
ap[i__2].r = arf[i__4].r, ap[i__2].i = arf[i__4].i;
++ijp;
}
js += lda;
}
i__1 = k - 1;
for (i__ = 0; i__ <= i__1; ++i__) {
i__3 = i__ + (k + i__) * lda;
i__2 = lda;
for (ij = i__; i__2 < 0 ? ij >= i__3 : ij <= i__3; ij +=
i__2) {
i__4 = ijp;
r_cnjg(&q__1, &arf[ij]);
ap[i__4].r = q__1.r, ap[i__4].i = q__1.i;
++ijp;
}
}
}
}
}
return 0;
/* End of CTFTTP */
} /* ctfttp_ */