/* csytf2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int csytf2_(char *uplo, integer *n, complex *a, integer *lda,
integer *ipiv, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
real r__1, r__2, r__3, r__4;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
double sqrt(doublereal), r_imag(complex *);
void c_div(complex *, complex *, complex *);
/* Local variables */
integer i__, j, k;
complex t, r1, d11, d12, d21, d22;
integer kk, kp;
complex wk, wkm1, wkp1;
integer imax, jmax;
extern /* Subroutine */ int csyr_(char *, integer *, complex *, complex *,
integer *, complex *, integer *);
real alpha;
extern /* Subroutine */ int cscal_(integer *, complex *, complex *,
integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cswap_(integer *, complex *, integer *,
complex *, integer *);
integer kstep;
logical upper;
real absakk;
extern integer icamax_(integer *, complex *, integer *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real colmax;
extern logical sisnan_(real *);
real rowmax;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CSYTF2 computes the factorization of a complex symmetric matrix A */
/* using the Bunch-Kaufman diagonal pivoting method: */
/* A = U*D*U' or A = L*D*L' */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, U' is the transpose of U, and D is symmetric and */
/* block diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
/* This is the unblocked version of the algorithm, calling Level 2 BLAS. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the upper or lower triangular part of the */
/* symmetric matrix A is stored: */
/* = 'U': Upper triangular */
/* = 'L': Lower triangular */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the symmetric matrix A. If UPLO = 'U', the leading */
/* n-by-n upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading n-by-n lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L (see below for further details). */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D. */
/* If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
/* interchanged and D(k,k) is a 1-by-1 diagonal block. */
/* If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and */
/* columns k-1 and -IPIV(k) were interchanged and D(k-1:k,k-1:k) */
/* is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = */
/* IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were */
/* interchanged and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -k, the k-th argument had an illegal value */
/* > 0: if INFO = k, D(k,k) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular, and division by zero will occur if it */
/* is used to solve a system of equations. */
/* Further Details */
/* =============== */
/* 09-29-06 - patch from */
/* Bobby Cheng, MathWorks */
/* Replace l.209 and l.377 */
/* IF( MAX( ABSAKK, COLMAX ).EQ.ZERO ) THEN */
/* by */
/* IF( (MAX( ABSAKK, COLMAX ).EQ.ZERO) .OR. SISNAN(ABSAKK) ) THEN */
/* 1-96 - Based on modifications by J. Lewis, Boeing Computer Services */
/* Company */
/* If UPLO = 'U', then A = U*D*U', where */
/* U = P(n)*U(n)* ... *P(k)U(k)* ..., */
/* i.e., U is a product of terms P(k)*U(k), where k decreases from n to */
/* 1 in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and U(k) is a unit upper triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I v 0 ) k-s */
/* U(k) = ( 0 I 0 ) s */
/* ( 0 0 I ) n-k */
/* k-s s n-k */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(1:k-1,k). */
/* If s = 2, the upper triangle of D(k) overwrites A(k-1,k-1), A(k-1,k), */
/* and A(k,k), and v overwrites A(1:k-2,k-1:k). */
/* If UPLO = 'L', then A = L*D*L', where */
/* L = P(1)*L(1)* ... *P(k)*L(k)* ..., */
/* i.e., L is a product of terms P(k)*L(k), where k increases from 1 to */
/* n in steps of 1 or 2, and D is a block diagonal matrix with 1-by-1 */
/* and 2-by-2 diagonal blocks D(k). P(k) is a permutation matrix as */
/* defined by IPIV(k), and L(k) is a unit lower triangular matrix, such */
/* that if the diagonal block D(k) is of order s (s = 1 or 2), then */
/* ( I 0 0 ) k-1 */
/* L(k) = ( 0 I 0 ) s */
/* ( 0 v I ) n-k-s+1 */
/* k-1 s n-k-s+1 */
/* If s = 1, D(k) overwrites A(k,k), and v overwrites A(k+1:n,k). */
/* If s = 2, the lower triangle of D(k) overwrites A(k,k), A(k+1,k), */
/* and A(k+1,k+1), and v overwrites A(k+2:n,k:k+1). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
/* Function Body */
*info = 0;
upper = lsame_(uplo, "U");
if (! upper && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CSYTF2", &i__1);
return 0;
}
/* Initialize ALPHA for use in choosing pivot block size. */
alpha = (sqrt(17.f) + 1.f) / 8.f;
if (upper) {
/* Factorize A as U*D*U' using the upper triangle of A */
/* K is the main loop index, decreasing from N to 1 in steps of */
/* 1 or 2 */
k = *n;
L10:
/* If K < 1, exit from loop */
if (k < 1) {
goto L70;
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
i__1 = k + k * a_dim1;
absakk = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[k + k *
a_dim1]), dabs(r__2));
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k > 1) {
i__1 = k - 1;
imax = icamax_(&i__1, &a[k * a_dim1 + 1], &c__1);
i__1 = imax + k * a_dim1;
colmax = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[imax
+ k * a_dim1]), dabs(r__2));
} else {
colmax = 0.f;
}
if (dmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {
/* Column K is zero or NaN: set INFO and continue */
if (*info == 0) {
*info = k;
}
kp = k;
} else {
if (absakk >= alpha * colmax) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = k - imax;
jmax = imax + icamax_(&i__1, &a[imax + (imax + 1) * a_dim1],
lda);
i__1 = imax + jmax * a_dim1;
rowmax = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[
imax + jmax * a_dim1]), dabs(r__2));
if (imax > 1) {
i__1 = imax - 1;
jmax = icamax_(&i__1, &a[imax * a_dim1 + 1], &c__1);
/* Computing MAX */
i__1 = jmax + imax * a_dim1;
r__3 = rowmax, r__4 = (r__1 = a[i__1].r, dabs(r__1)) + (
r__2 = r_imag(&a[jmax + imax * a_dim1]), dabs(
r__2));
rowmax = dmax(r__3,r__4);
}
if (absakk >= alpha * colmax * (colmax / rowmax)) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else /* if(complicated condition) */ {
i__1 = imax + imax * a_dim1;
if ((r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[
imax + imax * a_dim1]), dabs(r__2)) >= alpha *
rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K-1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
}
}
}
kk = k - kstep + 1;
if (kp != kk) {
/* Interchange rows and columns KK and KP in the leading */
/* submatrix A(1:k,1:k) */
i__1 = kp - 1;
cswap_(&i__1, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1],
&c__1);
i__1 = kk - kp - 1;
cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp +
1) * a_dim1], lda);
i__1 = kk + kk * a_dim1;
t.r = a[i__1].r, t.i = a[i__1].i;
i__1 = kk + kk * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = t.r, a[i__1].i = t.i;
if (kstep == 2) {
i__1 = k - 1 + k * a_dim1;
t.r = a[i__1].r, t.i = a[i__1].i;
i__1 = k - 1 + k * a_dim1;
i__2 = kp + k * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + k * a_dim1;
a[i__1].r = t.r, a[i__1].i = t.i;
}
}
/* Update the leading submatrix */
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds */
/* W(k) = U(k)*D(k) */
/* where U(k) is the k-th column of U */
/* Perform a rank-1 update of A(1:k-1,1:k-1) as */
/* A := A - U(k)*D(k)*U(k)' = A - W(k)*1/D(k)*W(k)' */
c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
r1.r = q__1.r, r1.i = q__1.i;
i__1 = k - 1;
q__1.r = -r1.r, q__1.i = -r1.i;
csyr_(uplo, &i__1, &q__1, &a[k * a_dim1 + 1], &c__1, &a[
a_offset], lda);
/* Store U(k) in column k */
i__1 = k - 1;
cscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
} else {
/* 2-by-2 pivot block D(k): columns k and k-1 now hold */
/* ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
/* where U(k) and U(k-1) are the k-th and (k-1)-th columns */
/* of U */
/* Perform a rank-2 update of A(1:k-2,1:k-2) as */
/* A := A - ( U(k-1) U(k) )*D(k)*( U(k-1) U(k) )' */
/* = A - ( W(k-1) W(k) )*inv(D(k))*( W(k-1) W(k) )' */
if (k > 2) {
i__1 = k - 1 + k * a_dim1;
d12.r = a[i__1].r, d12.i = a[i__1].i;
c_div(&q__1, &a[k - 1 + (k - 1) * a_dim1], &d12);
d22.r = q__1.r, d22.i = q__1.i;
c_div(&q__1, &a[k + k * a_dim1], &d12);
d11.r = q__1.r, d11.i = q__1.i;
q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
d22.i + d11.i * d22.r;
q__2.r = q__3.r - 1.f, q__2.i = q__3.i - 0.f;
c_div(&q__1, &c_b1, &q__2);
t.r = q__1.r, t.i = q__1.i;
c_div(&q__1, &t, &d12);
d12.r = q__1.r, d12.i = q__1.i;
for (j = k - 2; j >= 1; --j) {
i__1 = j + (k - 1) * a_dim1;
q__3.r = d11.r * a[i__1].r - d11.i * a[i__1].i,
q__3.i = d11.r * a[i__1].i + d11.i * a[i__1]
.r;
i__2 = j + k * a_dim1;
q__2.r = q__3.r - a[i__2].r, q__2.i = q__3.i - a[i__2]
.i;
q__1.r = d12.r * q__2.r - d12.i * q__2.i, q__1.i =
d12.r * q__2.i + d12.i * q__2.r;
wkm1.r = q__1.r, wkm1.i = q__1.i;
i__1 = j + k * a_dim1;
q__3.r = d22.r * a[i__1].r - d22.i * a[i__1].i,
q__3.i = d22.r * a[i__1].i + d22.i * a[i__1]
.r;
i__2 = j + (k - 1) * a_dim1;
q__2.r = q__3.r - a[i__2].r, q__2.i = q__3.i - a[i__2]
.i;
q__1.r = d12.r * q__2.r - d12.i * q__2.i, q__1.i =
d12.r * q__2.i + d12.i * q__2.r;
wk.r = q__1.r, wk.i = q__1.i;
for (i__ = j; i__ >= 1; --i__) {
i__1 = i__ + j * a_dim1;
i__2 = i__ + j * a_dim1;
i__3 = i__ + k * a_dim1;
q__3.r = a[i__3].r * wk.r - a[i__3].i * wk.i,
q__3.i = a[i__3].r * wk.i + a[i__3].i *
wk.r;
q__2.r = a[i__2].r - q__3.r, q__2.i = a[i__2].i -
q__3.i;
i__4 = i__ + (k - 1) * a_dim1;
q__4.r = a[i__4].r * wkm1.r - a[i__4].i * wkm1.i,
q__4.i = a[i__4].r * wkm1.i + a[i__4].i *
wkm1.r;
q__1.r = q__2.r - q__4.r, q__1.i = q__2.i -
q__4.i;
a[i__1].r = q__1.r, a[i__1].i = q__1.i;
/* L20: */
}
i__1 = j + k * a_dim1;
a[i__1].r = wk.r, a[i__1].i = wk.i;
i__1 = j + (k - 1) * a_dim1;
a[i__1].r = wkm1.r, a[i__1].i = wkm1.i;
/* L30: */
}
}
}
}
/* Store details of the interchanges in IPIV */
if (kstep == 1) {
ipiv[k] = kp;
} else {
ipiv[k] = -kp;
ipiv[k - 1] = -kp;
}
/* Decrease K and return to the start of the main loop */
k -= kstep;
goto L10;
} else {
/* Factorize A as L*D*L' using the lower triangle of A */
/* K is the main loop index, increasing from 1 to N in steps of */
/* 1 or 2 */
k = 1;
L40:
/* If K > N, exit from loop */
if (k > *n) {
goto L70;
}
kstep = 1;
/* Determine rows and columns to be interchanged and whether */
/* a 1-by-1 or 2-by-2 pivot block will be used */
i__1 = k + k * a_dim1;
absakk = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[k + k *
a_dim1]), dabs(r__2));
/* IMAX is the row-index of the largest off-diagonal element in */
/* column K, and COLMAX is its absolute value */
if (k < *n) {
i__1 = *n - k;
imax = k + icamax_(&i__1, &a[k + 1 + k * a_dim1], &c__1);
i__1 = imax + k * a_dim1;
colmax = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[imax
+ k * a_dim1]), dabs(r__2));
} else {
colmax = 0.f;
}
if (dmax(absakk,colmax) == 0.f || sisnan_(&absakk)) {
/* Column K is zero or NaN: set INFO and continue */
if (*info == 0) {
*info = k;
}
kp = k;
} else {
if (absakk >= alpha * colmax) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else {
/* JMAX is the column-index of the largest off-diagonal */
/* element in row IMAX, and ROWMAX is its absolute value */
i__1 = imax - k;
jmax = k - 1 + icamax_(&i__1, &a[imax + k * a_dim1], lda);
i__1 = imax + jmax * a_dim1;
rowmax = (r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[
imax + jmax * a_dim1]), dabs(r__2));
if (imax < *n) {
i__1 = *n - imax;
jmax = imax + icamax_(&i__1, &a[imax + 1 + imax * a_dim1],
&c__1);
/* Computing MAX */
i__1 = jmax + imax * a_dim1;
r__3 = rowmax, r__4 = (r__1 = a[i__1].r, dabs(r__1)) + (
r__2 = r_imag(&a[jmax + imax * a_dim1]), dabs(
r__2));
rowmax = dmax(r__3,r__4);
}
if (absakk >= alpha * colmax * (colmax / rowmax)) {
/* no interchange, use 1-by-1 pivot block */
kp = k;
} else /* if(complicated condition) */ {
i__1 = imax + imax * a_dim1;
if ((r__1 = a[i__1].r, dabs(r__1)) + (r__2 = r_imag(&a[
imax + imax * a_dim1]), dabs(r__2)) >= alpha *
rowmax) {
/* interchange rows and columns K and IMAX, use 1-by-1 */
/* pivot block */
kp = imax;
} else {
/* interchange rows and columns K+1 and IMAX, use 2-by-2 */
/* pivot block */
kp = imax;
kstep = 2;
}
}
}
kk = k + kstep - 1;
if (kp != kk) {
/* Interchange rows and columns KK and KP in the trailing */
/* submatrix A(k:n,k:n) */
if (kp < *n) {
i__1 = *n - kp;
cswap_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + 1
+ kp * a_dim1], &c__1);
}
i__1 = kp - kk - 1;
cswap_(&i__1, &a[kk + 1 + kk * a_dim1], &c__1, &a[kp + (kk +
1) * a_dim1], lda);
i__1 = kk + kk * a_dim1;
t.r = a[i__1].r, t.i = a[i__1].i;
i__1 = kk + kk * a_dim1;
i__2 = kp + kp * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + kp * a_dim1;
a[i__1].r = t.r, a[i__1].i = t.i;
if (kstep == 2) {
i__1 = k + 1 + k * a_dim1;
t.r = a[i__1].r, t.i = a[i__1].i;
i__1 = k + 1 + k * a_dim1;
i__2 = kp + k * a_dim1;
a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
i__1 = kp + k * a_dim1;
a[i__1].r = t.r, a[i__1].i = t.i;
}
}
/* Update the trailing submatrix */
if (kstep == 1) {
/* 1-by-1 pivot block D(k): column k now holds */
/* W(k) = L(k)*D(k) */
/* where L(k) is the k-th column of L */
if (k < *n) {
/* Perform a rank-1 update of A(k+1:n,k+1:n) as */
/* A := A - L(k)*D(k)*L(k)' = A - W(k)*(1/D(k))*W(k)' */
c_div(&q__1, &c_b1, &a[k + k * a_dim1]);
r1.r = q__1.r, r1.i = q__1.i;
i__1 = *n - k;
q__1.r = -r1.r, q__1.i = -r1.i;
csyr_(uplo, &i__1, &q__1, &a[k + 1 + k * a_dim1], &c__1, &
a[k + 1 + (k + 1) * a_dim1], lda);
/* Store L(k) in column K */
i__1 = *n - k;
cscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
}
} else {
/* 2-by-2 pivot block D(k) */
if (k < *n - 1) {
/* Perform a rank-2 update of A(k+2:n,k+2:n) as */
/* A := A - ( L(k) L(k+1) )*D(k)*( L(k) L(k+1) )' */
/* = A - ( W(k) W(k+1) )*inv(D(k))*( W(k) W(k+1) )' */
/* where L(k) and L(k+1) are the k-th and (k+1)-th */
/* columns of L */
i__1 = k + 1 + k * a_dim1;
d21.r = a[i__1].r, d21.i = a[i__1].i;
c_div(&q__1, &a[k + 1 + (k + 1) * a_dim1], &d21);
d11.r = q__1.r, d11.i = q__1.i;
c_div(&q__1, &a[k + k * a_dim1], &d21);
d22.r = q__1.r, d22.i = q__1.i;
q__3.r = d11.r * d22.r - d11.i * d22.i, q__3.i = d11.r *
d22.i + d11.i * d22.r;
q__2.r = q__3.r - 1.f, q__2.i = q__3.i - 0.f;
c_div(&q__1, &c_b1, &q__2);
t.r = q__1.r, t.i = q__1.i;
c_div(&q__1, &t, &d21);
d21.r = q__1.r, d21.i = q__1.i;
i__1 = *n;
for (j = k + 2; j <= i__1; ++j) {
i__2 = j + k * a_dim1;
q__3.r = d11.r * a[i__2].r - d11.i * a[i__2].i,
q__3.i = d11.r * a[i__2].i + d11.i * a[i__2]
.r;
i__3 = j + (k + 1) * a_dim1;
q__2.r = q__3.r - a[i__3].r, q__2.i = q__3.i - a[i__3]
.i;
q__1.r = d21.r * q__2.r - d21.i * q__2.i, q__1.i =
d21.r * q__2.i + d21.i * q__2.r;
wk.r = q__1.r, wk.i = q__1.i;
i__2 = j + (k + 1) * a_dim1;
q__3.r = d22.r * a[i__2].r - d22.i * a[i__2].i,
q__3.i = d22.r * a[i__2].i + d22.i * a[i__2]
.r;
i__3 = j + k * a_dim1;
q__2.r = q__3.r - a[i__3].r, q__2.i = q__3.i - a[i__3]
.i;
q__1.r = d21.r * q__2.r - d21.i * q__2.i, q__1.i =
d21.r * q__2.i + d21.i * q__2.r;
wkp1.r = q__1.r, wkp1.i = q__1.i;
i__2 = *n;
for (i__ = j; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = i__ + j * a_dim1;
i__5 = i__ + k * a_dim1;
q__3.r = a[i__5].r * wk.r - a[i__5].i * wk.i,
q__3.i = a[i__5].r * wk.i + a[i__5].i *
wk.r;
q__2.r = a[i__4].r - q__3.r, q__2.i = a[i__4].i -
q__3.i;
i__6 = i__ + (k + 1) * a_dim1;
q__4.r = a[i__6].r * wkp1.r - a[i__6].i * wkp1.i,
q__4.i = a[i__6].r * wkp1.i + a[i__6].i *
wkp1.r;
q__1.r = q__2.r - q__4.r, q__1.i = q__2.i -
q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L50: */
}
i__2 = j + k * a_dim1;
a[i__2].r = wk.r, a[i__2].i = wk.i;
i__2 = j + (k + 1) * a_dim1;
a[i__2].r = wkp1.r, a[i__2].i = wkp1.i;
/* L60: */
}
}
}
}
/* Store details of the interchanges in IPIV */
if (kstep == 1) {
ipiv[k] = kp;
} else {
ipiv[k] = -kp;
ipiv[k + 1] = -kp;
}
/* Increase K and return to the start of the main loop */
k += kstep;
goto L40;
}
L70:
return 0;
/* End of CSYTF2 */
} /* csytf2_ */