/* cspr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int cspr_(char *uplo, integer *n, complex *alpha, complex *x,
integer *incx, complex *ap)
{
/* System generated locals */
integer i__1, i__2, i__3, i__4, i__5;
complex q__1, q__2;
/* Local variables */
integer i__, j, k, kk, ix, jx, kx, info;
complex temp;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CSPR performs the symmetric rank 1 operation */
/* A := alpha*x*conjg( x' ) + A, */
/* where alpha is a complex scalar, x is an n element vector and A is an */
/* n by n symmetric matrix, supplied in packed form. */
/* Arguments */
/* ========== */
/* UPLO (input) CHARACTER*1 */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the matrix A is supplied in the packed */
/* array AP as follows: */
/* UPLO = 'U' or 'u' The upper triangular part of A is */
/* supplied in AP. */
/* UPLO = 'L' or 'l' The lower triangular part of A is */
/* supplied in AP. */
/* Unchanged on exit. */
/* N (input) INTEGER */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA (input) COMPLEX */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* X (input) COMPLEX array, dimension at least */
/* ( 1 + ( N - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the N- */
/* element vector x. */
/* Unchanged on exit. */
/* INCX (input) INTEGER */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* AP (input/output) COMPLEX array, dimension at least */
/* ( ( N*( N + 1 ) )/2 ). */
/* Before entry, with UPLO = 'U' or 'u', the array AP must */
/* contain the upper triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 1, 2 ) */
/* and a( 2, 2 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the upper triangular part of the */
/* updated matrix. */
/* Before entry, with UPLO = 'L' or 'l', the array AP must */
/* contain the lower triangular part of the symmetric matrix */
/* packed sequentially, column by column, so that AP( 1 ) */
/* contains a( 1, 1 ), AP( 2 ) and AP( 3 ) contain a( 2, 1 ) */
/* and a( 3, 1 ) respectively, and so on. On exit, the array */
/* AP is overwritten by the lower triangular part of the */
/* updated matrix. */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set, they are assumed to be zero, and on exit they */
/* are set to zero. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--x;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
}
if (info != 0) {
xerbla_("CSPR ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
/* Set the start point in X if the increment is not unity. */
if (*incx <= 0) {
kx = 1 - (*n - 1) * *incx;
} else if (*incx != 1) {
kx = 1;
}
/* Start the operations. In this version the elements of the array AP */
/* are accessed sequentially with one pass through AP. */
kk = 1;
if (lsame_(uplo, "U")) {
/* Form A when upper triangle is stored in AP. */
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
i__2 = j;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
temp.r = q__1.r, temp.i = q__1.i;
k = kk;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = k;
i__4 = k;
i__5 = i__;
q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
q__2.i = x[i__5].r * temp.i + x[i__5].i *
temp.r;
q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
q__2.i;
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++k;
/* L10: */
}
i__2 = kk + j - 1;
i__3 = kk + j - 1;
i__4 = j;
q__2.r = x[i__4].r * temp.r - x[i__4].i * temp.i, q__2.i =
x[i__4].r * temp.i + x[i__4].i * temp.r;
q__1.r = ap[i__3].r + q__2.r, q__1.i = ap[i__3].i +
q__2.i;
ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
} else {
i__2 = kk + j - 1;
i__3 = kk + j - 1;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
}
kk += j;
/* L20: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
i__2 = jx;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
temp.r = q__1.r, temp.i = q__1.i;
ix = kx;
i__2 = kk + j - 2;
for (k = kk; k <= i__2; ++k) {
i__3 = k;
i__4 = k;
i__5 = ix;
q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
q__2.i = x[i__5].r * temp.i + x[i__5].i *
temp.r;
q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
q__2.i;
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
ix += *incx;
/* L30: */
}
i__2 = kk + j - 1;
i__3 = kk + j - 1;
i__4 = jx;
q__2.r = x[i__4].r * temp.r - x[i__4].i * temp.i, q__2.i =
x[i__4].r * temp.i + x[i__4].i * temp.r;
q__1.r = ap[i__3].r + q__2.r, q__1.i = ap[i__3].i +
q__2.i;
ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
} else {
i__2 = kk + j - 1;
i__3 = kk + j - 1;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
}
jx += *incx;
kk += j;
/* L40: */
}
}
} else {
/* Form A when lower triangle is stored in AP. */
if (*incx == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
i__2 = j;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
temp.r = q__1.r, temp.i = q__1.i;
i__2 = kk;
i__3 = kk;
i__4 = j;
q__2.r = temp.r * x[i__4].r - temp.i * x[i__4].i, q__2.i =
temp.r * x[i__4].i + temp.i * x[i__4].r;
q__1.r = ap[i__3].r + q__2.r, q__1.i = ap[i__3].i +
q__2.i;
ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
k = kk + 1;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = k;
i__4 = k;
i__5 = i__;
q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
q__2.i = x[i__5].r * temp.i + x[i__5].i *
temp.r;
q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
q__2.i;
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
++k;
/* L50: */
}
} else {
i__2 = kk;
i__3 = kk;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
}
kk = kk + *n - j + 1;
/* L60: */
}
} else {
jx = kx;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
if (x[i__2].r != 0.f || x[i__2].i != 0.f) {
i__2 = jx;
q__1.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__1.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
temp.r = q__1.r, temp.i = q__1.i;
i__2 = kk;
i__3 = kk;
i__4 = jx;
q__2.r = temp.r * x[i__4].r - temp.i * x[i__4].i, q__2.i =
temp.r * x[i__4].i + temp.i * x[i__4].r;
q__1.r = ap[i__3].r + q__2.r, q__1.i = ap[i__3].i +
q__2.i;
ap[i__2].r = q__1.r, ap[i__2].i = q__1.i;
ix = jx;
i__2 = kk + *n - j;
for (k = kk + 1; k <= i__2; ++k) {
ix += *incx;
i__3 = k;
i__4 = k;
i__5 = ix;
q__2.r = x[i__5].r * temp.r - x[i__5].i * temp.i,
q__2.i = x[i__5].r * temp.i + x[i__5].i *
temp.r;
q__1.r = ap[i__4].r + q__2.r, q__1.i = ap[i__4].i +
q__2.i;
ap[i__3].r = q__1.r, ap[i__3].i = q__1.i;
/* L70: */
}
} else {
i__2 = kk;
i__3 = kk;
ap[i__2].r = ap[i__3].r, ap[i__2].i = ap[i__3].i;
}
jx += *incx;
kk = kk + *n - j + 1;
/* L80: */
}
}
}
return 0;
/* End of CSPR */
} /* cspr_ */