/* clatzm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static complex c_b1 = {1.f,0.f};
static integer c__1 = 1;
/* Subroutine */ int clatzm_(char *side, integer *m, integer *n, complex *v,
integer *incv, complex *tau, complex *c1, complex *c2, integer *ldc,
complex *work)
{
/* System generated locals */
integer c1_dim1, c1_offset, c2_dim1, c2_offset, i__1;
complex q__1;
/* Local variables */
extern /* Subroutine */ int cgerc_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
cgemv_(char *, integer *, integer *, complex *, complex *,
integer *, complex *, integer *, complex *, complex *, integer *);
extern logical lsame_(char *, char *);
extern /* Subroutine */ int cgeru_(integer *, integer *, complex *,
complex *, integer *, complex *, integer *, complex *, integer *),
ccopy_(integer *, complex *, integer *, complex *, integer *),
caxpy_(integer *, complex *, complex *, integer *, complex *,
integer *), clacgv_(integer *, complex *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* This routine is deprecated and has been replaced by routine CUNMRZ. */
/* CLATZM applies a Householder matrix generated by CTZRQF to a matrix. */
/* Let P = I - tau*u*u', u = ( 1 ), */
/* ( v ) */
/* where v is an (m-1) vector if SIDE = 'L', or a (n-1) vector if */
/* SIDE = 'R'. */
/* If SIDE equals 'L', let */
/* C = [ C1 ] 1 */
/* [ C2 ] m-1 */
/* n */
/* Then C is overwritten by P*C. */
/* If SIDE equals 'R', let */
/* C = [ C1, C2 ] m */
/* 1 n-1 */
/* Then C is overwritten by C*P. */
/* Arguments */
/* ========= */
/* SIDE (input) CHARACTER*1 */
/* = 'L': form P * C */
/* = 'R': form C * P */
/* M (input) INTEGER */
/* The number of rows of the matrix C. */
/* N (input) INTEGER */
/* The number of columns of the matrix C. */
/* V (input) COMPLEX array, dimension */
/* (1 + (M-1)*abs(INCV)) if SIDE = 'L' */
/* (1 + (N-1)*abs(INCV)) if SIDE = 'R' */
/* The vector v in the representation of P. V is not used */
/* if TAU = 0. */
/* INCV (input) INTEGER */
/* The increment between elements of v. INCV <> 0 */
/* TAU (input) COMPLEX */
/* The value tau in the representation of P. */
/* C1 (input/output) COMPLEX array, dimension */
/* (LDC,N) if SIDE = 'L' */
/* (M,1) if SIDE = 'R' */
/* On entry, the n-vector C1 if SIDE = 'L', or the m-vector C1 */
/* if SIDE = 'R'. */
/* On exit, the first row of P*C if SIDE = 'L', or the first */
/* column of C*P if SIDE = 'R'. */
/* C2 (input/output) COMPLEX array, dimension */
/* (LDC, N) if SIDE = 'L' */
/* (LDC, N-1) if SIDE = 'R' */
/* On entry, the (m - 1) x n matrix C2 if SIDE = 'L', or the */
/* m x (n - 1) matrix C2 if SIDE = 'R'. */
/* On exit, rows 2:m of P*C if SIDE = 'L', or columns 2:m of C*P */
/* if SIDE = 'R'. */
/* LDC (input) INTEGER */
/* The leading dimension of the arrays C1 and C2. */
/* LDC >= max(1,M). */
/* WORK (workspace) COMPLEX array, dimension */
/* (N) if SIDE = 'L' */
/* (M) if SIDE = 'R' */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
--v;
c2_dim1 = *ldc;
c2_offset = 1 + c2_dim1;
c2 -= c2_offset;
c1_dim1 = *ldc;
c1_offset = 1 + c1_dim1;
c1 -= c1_offset;
--work;
/* Function Body */
if (min(*m,*n) == 0 || tau->r == 0.f && tau->i == 0.f) {
return 0;
}
if (lsame_(side, "L")) {
/* w := conjg( C1 + v' * C2 ) */
ccopy_(n, &c1[c1_offset], ldc, &work[1], &c__1);
clacgv_(n, &work[1], &c__1);
i__1 = *m - 1;
cgemv_("Conjugate transpose", &i__1, n, &c_b1, &c2[c2_offset], ldc, &
v[1], incv, &c_b1, &work[1], &c__1);
/* [ C1 ] := [ C1 ] - tau* [ 1 ] * w' */
/* [ C2 ] [ C2 ] [ v ] */
clacgv_(n, &work[1], &c__1);
q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(n, &q__1, &work[1], &c__1, &c1[c1_offset], ldc);
i__1 = *m - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgeru_(&i__1, n, &q__1, &v[1], incv, &work[1], &c__1, &c2[c2_offset],
ldc);
} else if (lsame_(side, "R")) {
/* w := C1 + C2 * v */
ccopy_(m, &c1[c1_offset], &c__1, &work[1], &c__1);
i__1 = *n - 1;
cgemv_("No transpose", m, &i__1, &c_b1, &c2[c2_offset], ldc, &v[1],
incv, &c_b1, &work[1], &c__1);
/* [ C1, C2 ] := [ C1, C2 ] - tau* w * [ 1 , v'] */
q__1.r = -tau->r, q__1.i = -tau->i;
caxpy_(m, &q__1, &work[1], &c__1, &c1[c1_offset], &c__1);
i__1 = *n - 1;
q__1.r = -tau->r, q__1.i = -tau->i;
cgerc_(m, &i__1, &q__1, &work[1], &c__1, &v[1], incv, &c2[c2_offset],
ldc);
}
return 0;
/* End of CLATZM */
} /* clatzm_ */