/* clarcm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static real c_b6 = 1.f;
static real c_b7 = 0.f;
/* Subroutine */ int clarcm_(integer *m, integer *n, real *a, integer *lda,
complex *b, integer *ldb, complex *c__, integer *ldc, real *rwork)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5;
real r__1;
complex q__1;
/* Builtin functions */
double r_imag(complex *);
/* Local variables */
integer i__, j, l;
extern /* Subroutine */ int sgemm_(char *, char *, integer *, integer *,
integer *, real *, real *, integer *, real *, integer *, real *,
real *, integer *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLARCM performs a very simple matrix-matrix multiplication: */
/* C := A * B, */
/* where A is M by M and real; B is M by N and complex; */
/* C is M by N and complex. */
/* Arguments */
/* ========= */
/* M (input) INTEGER */
/* The number of rows of the matrix A and of the matrix C. */
/* M >= 0. */
/* N (input) INTEGER */
/* The number of columns and rows of the matrix B and */
/* the number of columns of the matrix C. */
/* N >= 0. */
/* A (input) REAL array, dimension (LDA, M) */
/* A contains the M by M matrix A. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >=max(1,M). */
/* B (input) REAL array, dimension (LDB, N) */
/* B contains the M by N matrix B. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >=max(1,M). */
/* C (input) COMPLEX array, dimension (LDC, N) */
/* C contains the M by N matrix C. */
/* LDC (input) INTEGER */
/* The leading dimension of the array C. LDC >=max(1,M). */
/* RWORK (workspace) REAL array, dimension (2*M*N) */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Quick return if possible. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
--rwork;
/* Function Body */
if (*m == 0 || *n == 0) {
return 0;
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
rwork[(j - 1) * *m + i__] = b[i__3].r;
/* L10: */
}
/* L20: */
}
l = *m * *n + 1;
sgemm_("N", "N", m, n, m, &c_b6, &a[a_offset], lda, &rwork[1], m, &c_b7, &
rwork[l], m);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = l + (j - 1) * *m + i__ - 1;
c__[i__3].r = rwork[i__4], c__[i__3].i = 0.f;
/* L30: */
}
/* L40: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
rwork[(j - 1) * *m + i__] = r_imag(&b[i__ + j * b_dim1]);
/* L50: */
}
/* L60: */
}
sgemm_("N", "N", m, n, m, &c_b6, &a[a_offset], lda, &rwork[1], m, &c_b7, &
rwork[l], m);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
r__1 = c__[i__4].r;
i__5 = l + (j - 1) * *m + i__ - 1;
q__1.r = r__1, q__1.i = rwork[i__5];
c__[i__3].r = q__1.r, c__[i__3].i = q__1.i;
/* L70: */
}
/* L80: */
}
return 0;
/* End of CLARCM */
} /* clarcm_ */