/* clapmt.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int clapmt_(logical *forwrd, integer *m, integer *n, complex
*x, integer *ldx, integer *k)
{
/* System generated locals */
integer x_dim1, x_offset, i__1, i__2, i__3, i__4;
/* Local variables */
integer i__, j, ii, in;
complex temp;
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLAPMT rearranges the columns of the M by N matrix X as specified */
/* by the permutation K(1),K(2),...,K(N) of the integers 1,...,N. */
/* If FORWRD = .TRUE., forward permutation: */
/* X(*,K(J)) is moved X(*,J) for J = 1,2,...,N. */
/* If FORWRD = .FALSE., backward permutation: */
/* X(*,J) is moved to X(*,K(J)) for J = 1,2,...,N. */
/* Arguments */
/* ========= */
/* FORWRD (input) LOGICAL */
/* = .TRUE., forward permutation */
/* = .FALSE., backward permutation */
/* M (input) INTEGER */
/* The number of rows of the matrix X. M >= 0. */
/* N (input) INTEGER */
/* The number of columns of the matrix X. N >= 0. */
/* X (input/output) COMPLEX array, dimension (LDX,N) */
/* On entry, the M by N matrix X. */
/* On exit, X contains the permuted matrix X. */
/* LDX (input) INTEGER */
/* The leading dimension of the array X, LDX >= MAX(1,M). */
/* K (input/output) INTEGER array, dimension (N) */
/* On entry, K contains the permutation vector. K is used as */
/* internal workspace, but reset to its original value on */
/* output. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
x_dim1 = *ldx;
x_offset = 1 + x_dim1;
x -= x_offset;
--k;
/* Function Body */
if (*n <= 1) {
return 0;
}
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
k[i__] = -k[i__];
/* L10: */
}
if (*forwrd) {
/* Forward permutation */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (k[i__] > 0) {
goto L40;
}
j = i__;
k[j] = -k[j];
in = k[j];
L20:
if (k[in] > 0) {
goto L40;
}
i__2 = *m;
for (ii = 1; ii <= i__2; ++ii) {
i__3 = ii + j * x_dim1;
temp.r = x[i__3].r, temp.i = x[i__3].i;
i__3 = ii + j * x_dim1;
i__4 = ii + in * x_dim1;
x[i__3].r = x[i__4].r, x[i__3].i = x[i__4].i;
i__3 = ii + in * x_dim1;
x[i__3].r = temp.r, x[i__3].i = temp.i;
/* L30: */
}
k[in] = -k[in];
j = in;
in = k[in];
goto L20;
L40:
/* L60: */
;
}
} else {
/* Backward permutation */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
if (k[i__] > 0) {
goto L100;
}
k[i__] = -k[i__];
j = k[i__];
L80:
if (j == i__) {
goto L100;
}
i__2 = *m;
for (ii = 1; ii <= i__2; ++ii) {
i__3 = ii + i__ * x_dim1;
temp.r = x[i__3].r, temp.i = x[i__3].i;
i__3 = ii + i__ * x_dim1;
i__4 = ii + j * x_dim1;
x[i__3].r = x[i__4].r, x[i__3].i = x[i__4].i;
i__3 = ii + j * x_dim1;
x[i__3].r = temp.r, x[i__3].i = temp.i;
/* L90: */
}
k[j] = -k[j];
j = k[j];
goto L80;
L100:
/* L110: */
;
}
}
return 0;
/* End of CLAPMT */
} /* clapmt_ */