/* clantr.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal clantr_(char *norm, char *uplo, char *diag, integer *m, integer *n,
complex *a, integer *lda, real *work)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4;
real ret_val, r__1, r__2;
/* Builtin functions */
double c_abs(complex *), sqrt(doublereal);
/* Local variables */
integer i__, j;
real sum, scale;
logical udiag;
extern logical lsame_(char *, char *);
real value;
extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
*, real *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLANTR returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of a */
/* trapezoidal or triangular matrix A. */
/* Description */
/* =========== */
/* CLANTR returns the value */
/* CLANTR = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in CLANTR as described */
/* above. */
/* UPLO (input) CHARACTER*1 */
/* Specifies whether the matrix A is upper or lower trapezoidal. */
/* = 'U': Upper trapezoidal */
/* = 'L': Lower trapezoidal */
/* Note that A is triangular instead of trapezoidal if M = N. */
/* DIAG (input) CHARACTER*1 */
/* Specifies whether or not the matrix A has unit diagonal. */
/* = 'N': Non-unit diagonal */
/* = 'U': Unit diagonal */
/* M (input) INTEGER */
/* The number of rows of the matrix A. M >= 0, and if */
/* UPLO = 'U', M <= N. When M = 0, CLANTR is set to zero. */
/* N (input) INTEGER */
/* The number of columns of the matrix A. N >= 0, and if */
/* UPLO = 'L', N <= M. When N = 0, CLANTR is set to zero. */
/* A (input) COMPLEX array, dimension (LDA,N) */
/* The trapezoidal matrix A (A is triangular if M = N). */
/* If UPLO = 'U', the leading m by n upper trapezoidal part of */
/* the array A contains the upper trapezoidal matrix, and the */
/* strictly lower triangular part of A is not referenced. */
/* If UPLO = 'L', the leading m by n lower trapezoidal part of */
/* the array A contains the lower trapezoidal matrix, and the */
/* strictly upper triangular part of A is not referenced. Note */
/* that when DIAG = 'U', the diagonal elements of A are not */
/* referenced and are assumed to be one. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(M,1). */
/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */
/* where LWORK >= M when NORM = 'I'; otherwise, WORK is not */
/* referenced. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
/* Function Body */
if (min(*m,*n) == 0) {
value = 0.f;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
if (lsame_(diag, "U")) {
value = 1.f;
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *m, i__4 = j - 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]);
value = dmax(r__1,r__2);
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]);
value = dmax(r__1,r__2);
/* L30: */
}
/* L40: */
}
}
} else {
value = 0.f;
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = min(*m,j);
for (i__ = 1; i__ <= i__2; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]);
value = dmax(r__1,r__2);
/* L50: */
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = c_abs(&a[i__ + j * a_dim1]);
value = dmax(r__1,r__2);
/* L70: */
}
/* L80: */
}
}
}
} else if (lsame_(norm, "O") || *(unsigned char *)
norm == '1') {
/* Find norm1(A). */
value = 0.f;
udiag = lsame_(diag, "U");
if (lsame_(uplo, "U")) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (udiag && j <= *m) {
sum = 1.f;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
sum += c_abs(&a[i__ + j * a_dim1]);
/* L90: */
}
} else {
sum = 0.f;
i__2 = min(*m,j);
for (i__ = 1; i__ <= i__2; ++i__) {
sum += c_abs(&a[i__ + j * a_dim1]);
/* L100: */
}
}
value = dmax(value,sum);
/* L110: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (udiag) {
sum = 1.f;
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
sum += c_abs(&a[i__ + j * a_dim1]);
/* L120: */
}
} else {
sum = 0.f;
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
sum += c_abs(&a[i__ + j * a_dim1]);
/* L130: */
}
}
value = dmax(value,sum);
/* L140: */
}
}
} else if (lsame_(norm, "I")) {
/* Find normI(A). */
if (lsame_(uplo, "U")) {
if (lsame_(diag, "U")) {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 1.f;
/* L150: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *m, i__4 = j - 1;
i__2 = min(i__3,i__4);
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] += c_abs(&a[i__ + j * a_dim1]);
/* L160: */
}
/* L170: */
}
} else {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.f;
/* L180: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = min(*m,j);
for (i__ = 1; i__ <= i__2; ++i__) {
work[i__] += c_abs(&a[i__ + j * a_dim1]);
/* L190: */
}
/* L200: */
}
}
} else {
if (lsame_(diag, "U")) {
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 1.f;
/* L210: */
}
i__1 = *m;
for (i__ = *n + 1; i__ <= i__1; ++i__) {
work[i__] = 0.f;
/* L220: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j + 1; i__ <= i__2; ++i__) {
work[i__] += c_abs(&a[i__ + j * a_dim1]);
/* L230: */
}
/* L240: */
}
} else {
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.f;
/* L250: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = j; i__ <= i__2; ++i__) {
work[i__] += c_abs(&a[i__ + j * a_dim1]);
/* L260: */
}
/* L270: */
}
}
}
value = 0.f;
i__1 = *m;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = work[i__];
value = dmax(r__1,r__2);
/* L280: */
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
if (lsame_(uplo, "U")) {
if (lsame_(diag, "U")) {
scale = 1.f;
sum = (real) min(*m,*n);
i__1 = *n;
for (j = 2; j <= i__1; ++j) {
/* Computing MIN */
i__3 = *m, i__4 = j - 1;
i__2 = min(i__3,i__4);
classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/* L290: */
}
} else {
scale = 0.f;
sum = 1.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = min(*m,j);
classq_(&i__2, &a[j * a_dim1 + 1], &c__1, &scale, &sum);
/* L300: */
}
}
} else {
if (lsame_(diag, "U")) {
scale = 1.f;
sum = (real) min(*m,*n);
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m - j;
/* Computing MIN */
i__3 = *m, i__4 = j + 1;
classq_(&i__2, &a[min(i__3, i__4)+ j * a_dim1], &c__1, &
scale, &sum);
/* L310: */
}
} else {
scale = 0.f;
sum = 1.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m - j + 1;
classq_(&i__2, &a[j + j * a_dim1], &c__1, &scale, &sum);
/* L320: */
}
}
}
value = scale * sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of CLANTR */
} /* clantr_ */