/* clangb.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
doublereal clangb_(char *norm, integer *n, integer *kl, integer *ku, complex *
ab, integer *ldab, real *work)
{
/* System generated locals */
integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4, i__5, i__6;
real ret_val, r__1, r__2;
/* Builtin functions */
double c_abs(complex *), sqrt(doublereal);
/* Local variables */
integer i__, j, k, l;
real sum, scale;
extern logical lsame_(char *, char *);
real value;
extern /* Subroutine */ int classq_(integer *, complex *, integer *, real
*, real *);
/* -- LAPACK auxiliary routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CLANGB returns the value of the one norm, or the Frobenius norm, or */
/* the infinity norm, or the element of largest absolute value of an */
/* n by n band matrix A, with kl sub-diagonals and ku super-diagonals. */
/* Description */
/* =========== */
/* CLANGB returns the value */
/* CLANGB = ( max(abs(A(i,j))), NORM = 'M' or 'm' */
/* ( */
/* ( norm1(A), NORM = '1', 'O' or 'o' */
/* ( */
/* ( normI(A), NORM = 'I' or 'i' */
/* ( */
/* ( normF(A), NORM = 'F', 'f', 'E' or 'e' */
/* where norm1 denotes the one norm of a matrix (maximum column sum), */
/* normI denotes the infinity norm of a matrix (maximum row sum) and */
/* normF denotes the Frobenius norm of a matrix (square root of sum of */
/* squares). Note that max(abs(A(i,j))) is not a consistent matrix norm. */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies the value to be returned in CLANGB as described */
/* above. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. When N = 0, CLANGB is */
/* set to zero. */
/* KL (input) INTEGER */
/* The number of sub-diagonals of the matrix A. KL >= 0. */
/* KU (input) INTEGER */
/* The number of super-diagonals of the matrix A. KU >= 0. */
/* AB (input) COMPLEX array, dimension (LDAB,N) */
/* The band matrix A, stored in rows 1 to KL+KU+1. The j-th */
/* column of A is stored in the j-th column of the array AB as */
/* follows: */
/* AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl). */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KL+KU+1. */
/* WORK (workspace) REAL array, dimension (MAX(1,LWORK)), */
/* where LWORK >= N when NORM = 'I'; otherwise, WORK is not */
/* referenced. */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
--work;
/* Function Body */
if (*n == 0) {
value = 0.f;
} else if (lsame_(norm, "M")) {
/* Find max(abs(A(i,j))). */
value = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__2 = *ku + 2 - j;
/* Computing MIN */
i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
i__3 = min(i__4,i__5);
for (i__ = max(i__2,1); i__ <= i__3; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = c_abs(&ab[i__ + j * ab_dim1]);
value = dmax(r__1,r__2);
/* L10: */
}
/* L20: */
}
} else if (lsame_(norm, "O") || *(unsigned char *)
norm == '1') {
/* Find norm1(A). */
value = 0.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
sum = 0.f;
/* Computing MAX */
i__3 = *ku + 2 - j;
/* Computing MIN */
i__4 = *n + *ku + 1 - j, i__5 = *kl + *ku + 1;
i__2 = min(i__4,i__5);
for (i__ = max(i__3,1); i__ <= i__2; ++i__) {
sum += c_abs(&ab[i__ + j * ab_dim1]);
/* L30: */
}
value = dmax(value,sum);
/* L40: */
}
} else if (lsame_(norm, "I")) {
/* Find normI(A). */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
work[i__] = 0.f;
/* L50: */
}
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
k = *ku + 1 - j;
/* Computing MAX */
i__2 = 1, i__3 = j - *ku;
/* Computing MIN */
i__5 = *n, i__6 = j + *kl;
i__4 = min(i__5,i__6);
for (i__ = max(i__2,i__3); i__ <= i__4; ++i__) {
work[i__] += c_abs(&ab[k + i__ + j * ab_dim1]);
/* L60: */
}
/* L70: */
}
value = 0.f;
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
/* Computing MAX */
r__1 = value, r__2 = work[i__];
value = dmax(r__1,r__2);
/* L80: */
}
} else if (lsame_(norm, "F") || lsame_(norm, "E")) {
/* Find normF(A). */
scale = 0.f;
sum = 1.f;
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
/* Computing MAX */
i__4 = 1, i__2 = j - *ku;
l = max(i__4,i__2);
k = *ku + 1 - j + l;
/* Computing MIN */
i__2 = *n, i__3 = j + *kl;
i__4 = min(i__2,i__3) - l + 1;
classq_(&i__4, &ab[k + j * ab_dim1], &c__1, &scale, &sum);
/* L90: */
}
value = scale * sqrt(sum);
}
ret_val = value;
return ret_val;
/* End of CLANGB */
} /* clangb_ */