/* claed0.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__9 = 9;
static integer c__0 = 0;
static integer c__2 = 2;
static integer c__1 = 1;
/* Subroutine */ int claed0_(integer *qsiz, integer *n, real *d__, real *e,
complex *q, integer *ldq, complex *qstore, integer *ldqs, real *rwork,
integer *iwork, integer *info)
{
/* System generated locals */
integer q_dim1, q_offset, qstore_dim1, qstore_offset, i__1, i__2;
real r__1;
/* Builtin functions */
double log(doublereal);
integer pow_ii(integer *, integer *);
/* Local variables */
integer i__, j, k, ll, iq, lgn, msd2, smm1, spm1, spm2;
real temp;
integer curr, iperm;
extern /* Subroutine */ int ccopy_(integer *, complex *, integer *,
complex *, integer *);
integer indxq, iwrem;
extern /* Subroutine */ int scopy_(integer *, real *, integer *, real *,
integer *);
integer iqptr;
extern /* Subroutine */ int claed7_(integer *, integer *, integer *,
integer *, integer *, integer *, real *, complex *, integer *,
real *, integer *, real *, integer *, integer *, integer *,
integer *, integer *, real *, complex *, real *, integer *,
integer *);
integer tlvls;
extern /* Subroutine */ int clacrm_(integer *, integer *, complex *,
integer *, real *, integer *, complex *, integer *, real *);
integer igivcl;
extern /* Subroutine */ int xerbla_(char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
integer igivnm, submat, curprb, subpbs, igivpt, curlvl, matsiz, iprmpt,
smlsiz;
extern /* Subroutine */ int ssteqr_(char *, integer *, real *, real *,
real *, integer *, real *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* Using the divide and conquer method, CLAED0 computes all eigenvalues */
/* of a symmetric tridiagonal matrix which is one diagonal block of */
/* those from reducing a dense or band Hermitian matrix and */
/* corresponding eigenvectors of the dense or band matrix. */
/* Arguments */
/* ========= */
/* QSIZ (input) INTEGER */
/* The dimension of the unitary matrix used to reduce */
/* the full matrix to tridiagonal form. QSIZ >= N if ICOMPQ = 1. */
/* N (input) INTEGER */
/* The dimension of the symmetric tridiagonal matrix. N >= 0. */
/* D (input/output) REAL array, dimension (N) */
/* On entry, the diagonal elements of the tridiagonal matrix. */
/* On exit, the eigenvalues in ascending order. */
/* E (input/output) REAL array, dimension (N-1) */
/* On entry, the off-diagonal elements of the tridiagonal matrix. */
/* On exit, E has been destroyed. */
/* Q (input/output) COMPLEX array, dimension (LDQ,N) */
/* On entry, Q must contain an QSIZ x N matrix whose columns */
/* unitarily orthonormal. It is a part of the unitary matrix */
/* that reduces the full dense Hermitian matrix to a */
/* (reducible) symmetric tridiagonal matrix. */
/* LDQ (input) INTEGER */
/* The leading dimension of the array Q. LDQ >= max(1,N). */
/* IWORK (workspace) INTEGER array, */
/* the dimension of IWORK must be at least */
/* 6 + 6*N + 5*N*lg N */
/* ( lg( N ) = smallest integer k */
/* such that 2^k >= N ) */
/* RWORK (workspace) REAL array, */
/* dimension (1 + 3*N + 2*N*lg N + 3*N**2) */
/* ( lg( N ) = smallest integer k */
/* such that 2^k >= N ) */
/* QSTORE (workspace) COMPLEX array, dimension (LDQS, N) */
/* Used to store parts of */
/* the eigenvector matrix when the updating matrix multiplies */
/* take place. */
/* LDQS (input) INTEGER */
/* The leading dimension of the array QSTORE. */
/* LDQS >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit. */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* > 0: The algorithm failed to compute an eigenvalue while */
/* working on the submatrix lying in rows and columns */
/* INFO/(N+1) through mod(INFO,N+1). */
/* ===================================================================== */
/* Warning: N could be as big as QSIZ! */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--d__;
--e;
q_dim1 = *ldq;
q_offset = 1 + q_dim1;
q -= q_offset;
qstore_dim1 = *ldqs;
qstore_offset = 1 + qstore_dim1;
qstore -= qstore_offset;
--rwork;
--iwork;
/* Function Body */
*info = 0;
/* IF( ICOMPQ .LT. 0 .OR. ICOMPQ .GT. 2 ) THEN */
/* INFO = -1 */
/* ELSE IF( ( ICOMPQ .EQ. 1 ) .AND. ( QSIZ .LT. MAX( 0, N ) ) ) */
/* $ THEN */
if (*qsiz < max(0,*n)) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*ldq < max(1,*n)) {
*info = -6;
} else if (*ldqs < max(1,*n)) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CLAED0", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
smlsiz = ilaenv_(&c__9, "CLAED0", " ", &c__0, &c__0, &c__0, &c__0);
/* Determine the size and placement of the submatrices, and save in */
/* the leading elements of IWORK. */
iwork[1] = *n;
subpbs = 1;
tlvls = 0;
L10:
if (iwork[subpbs] > smlsiz) {
for (j = subpbs; j >= 1; --j) {
iwork[j * 2] = (iwork[j] + 1) / 2;
iwork[(j << 1) - 1] = iwork[j] / 2;
/* L20: */
}
++tlvls;
subpbs <<= 1;
goto L10;
}
i__1 = subpbs;
for (j = 2; j <= i__1; ++j) {
iwork[j] += iwork[j - 1];
/* L30: */
}
/* Divide the matrix into SUBPBS submatrices of size at most SMLSIZ+1 */
/* using rank-1 modifications (cuts). */
spm1 = subpbs - 1;
i__1 = spm1;
for (i__ = 1; i__ <= i__1; ++i__) {
submat = iwork[i__] + 1;
smm1 = submat - 1;
d__[smm1] -= (r__1 = e[smm1], dabs(r__1));
d__[submat] -= (r__1 = e[smm1], dabs(r__1));
/* L40: */
}
indxq = (*n << 2) + 3;
/* Set up workspaces for eigenvalues only/accumulate new vectors */
/* routine */
temp = log((real) (*n)) / log(2.f);
lgn = (integer) temp;
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
if (pow_ii(&c__2, &lgn) < *n) {
++lgn;
}
iprmpt = indxq + *n + 1;
iperm = iprmpt + *n * lgn;
iqptr = iperm + *n * lgn;
igivpt = iqptr + *n + 2;
igivcl = igivpt + *n * lgn;
igivnm = 1;
iq = igivnm + (*n << 1) * lgn;
/* Computing 2nd power */
i__1 = *n;
iwrem = iq + i__1 * i__1 + 1;
/* Initialize pointers */
i__1 = subpbs;
for (i__ = 0; i__ <= i__1; ++i__) {
iwork[iprmpt + i__] = 1;
iwork[igivpt + i__] = 1;
/* L50: */
}
iwork[iqptr] = 1;
/* Solve each submatrix eigenproblem at the bottom of the divide and */
/* conquer tree. */
curr = 0;
i__1 = spm1;
for (i__ = 0; i__ <= i__1; ++i__) {
if (i__ == 0) {
submat = 1;
matsiz = iwork[1];
} else {
submat = iwork[i__] + 1;
matsiz = iwork[i__ + 1] - iwork[i__];
}
ll = iq - 1 + iwork[iqptr + curr];
ssteqr_("I", &matsiz, &d__[submat], &e[submat], &rwork[ll], &matsiz, &
rwork[1], info);
clacrm_(qsiz, &matsiz, &q[submat * q_dim1 + 1], ldq, &rwork[ll], &
matsiz, &qstore[submat * qstore_dim1 + 1], ldqs, &rwork[iwrem]
);
/* Computing 2nd power */
i__2 = matsiz;
iwork[iqptr + curr + 1] = iwork[iqptr + curr] + i__2 * i__2;
++curr;
if (*info > 0) {
*info = submat * (*n + 1) + submat + matsiz - 1;
return 0;
}
k = 1;
i__2 = iwork[i__ + 1];
for (j = submat; j <= i__2; ++j) {
iwork[indxq + j] = k;
++k;
/* L60: */
}
/* L70: */
}
/* Successively merge eigensystems of adjacent submatrices */
/* into eigensystem for the corresponding larger matrix. */
/* while ( SUBPBS > 1 ) */
curlvl = 1;
L80:
if (subpbs > 1) {
spm2 = subpbs - 2;
i__1 = spm2;
for (i__ = 0; i__ <= i__1; i__ += 2) {
if (i__ == 0) {
submat = 1;
matsiz = iwork[2];
msd2 = iwork[1];
curprb = 0;
} else {
submat = iwork[i__] + 1;
matsiz = iwork[i__ + 2] - iwork[i__];
msd2 = matsiz / 2;
++curprb;
}
/* Merge lower order eigensystems (of size MSD2 and MATSIZ - MSD2) */
/* into an eigensystem of size MATSIZ. CLAED7 handles the case */
/* when the eigenvectors of a full or band Hermitian matrix (which */
/* was reduced to tridiagonal form) are desired. */
/* I am free to use Q as a valuable working space until Loop 150. */
claed7_(&matsiz, &msd2, qsiz, &tlvls, &curlvl, &curprb, &d__[
submat], &qstore[submat * qstore_dim1 + 1], ldqs, &e[
submat + msd2 - 1], &iwork[indxq + submat], &rwork[iq], &
iwork[iqptr], &iwork[iprmpt], &iwork[iperm], &iwork[
igivpt], &iwork[igivcl], &rwork[igivnm], &q[submat *
q_dim1 + 1], &rwork[iwrem], &iwork[subpbs + 1], info);
if (*info > 0) {
*info = submat * (*n + 1) + submat + matsiz - 1;
return 0;
}
iwork[i__ / 2 + 1] = iwork[i__ + 2];
/* L90: */
}
subpbs /= 2;
++curlvl;
goto L80;
}
/* end while */
/* Re-merge the eigenvalues/vectors which were deflated at the final */
/* merge step. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
j = iwork[indxq + i__];
rwork[i__] = d__[j];
ccopy_(qsiz, &qstore[j * qstore_dim1 + 1], &c__1, &q[i__ * q_dim1 + 1]
, &c__1);
/* L100: */
}
scopy_(n, &rwork[1], &c__1, &d__[1], &c__1);
return 0;
/* End of CLAED0 */
} /* claed0_ */