/* chpsv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int chpsv_(char *uplo, integer *n, integer *nrhs, complex *
ap, integer *ipiv, complex *b, integer *ldb, integer *info)
{
/* System generated locals */
integer b_dim1, b_offset, i__1;
/* Local variables */
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *), chptrf_(
char *, integer *, complex *, integer *, integer *),
chptrs_(char *, integer *, integer *, complex *, integer *,
complex *, integer *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHPSV computes the solution to a complex system of linear equations */
/* A * X = B, */
/* where A is an N-by-N Hermitian matrix stored in packed format and X */
/* and B are N-by-NRHS matrices. */
/* The diagonal pivoting method is used to factor A as */
/* A = U * D * U**H, if UPLO = 'U', or */
/* A = L * D * L**H, if UPLO = 'L', */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, D is Hermitian and block diagonal with 1-by-1 */
/* and 2-by-2 diagonal blocks. The factored form of A is then used to */
/* solve the system of equations A * X = B. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the Hermitian matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n. */
/* See below for further details. */
/* On exit, the block diagonal matrix D and the multipliers used */
/* to obtain the factor U or L from the factorization */
/* A = U*D*U**H or A = L*D*L**H as computed by CHPTRF, stored as */
/* a packed triangular matrix in the same storage format as A. */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D, as */
/* determined by CHPTRF. If IPIV(k) > 0, then rows and columns */
/* k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 */
/* diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, */
/* then rows and columns k-1 and -IPIV(k) were interchanged and */
/* D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and */
/* IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and */
/* -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 */
/* diagonal block. */
/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular, so the solution could not be */
/* computed. */
/* Further Details */
/* =============== */
/* The packed storage scheme is illustrated by the following example */
/* when N = 4, UPLO = 'U': */
/* Two-dimensional storage of the Hermitian matrix A: */
/* a11 a12 a13 a14 */
/* a22 a23 a24 */
/* a33 a34 (aij = conjg(aji)) */
/* a44 */
/* Packed storage of the upper triangle of A: */
/* AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ] */
/* ===================================================================== */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
/* Function Body */
*info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*ldb < max(1,*n)) {
*info = -7;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHPSV ", &i__1);
return 0;
}
/* Compute the factorization A = U*D*U' or A = L*D*L'. */
chptrf_(uplo, n, &ap[1], &ipiv[1], info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
chptrs_(uplo, n, nrhs, &ap[1], &ipiv[1], &b[b_offset], ldb, info);
}
return 0;
/* End of CHPSV */
} /* chpsv_ */