/* chpgvx.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int chpgvx_(integer *itype, char *jobz, char *range, char *
uplo, integer *n, complex *ap, complex *bp, real *vl, real *vu,
integer *il, integer *iu, real *abstol, integer *m, real *w, complex *
z__, integer *ldz, complex *work, real *rwork, integer *iwork,
integer *ifail, integer *info)
{
/* System generated locals */
integer z_dim1, z_offset, i__1;
/* Local variables */
integer j;
extern logical lsame_(char *, char *);
char trans[1];
extern /* Subroutine */ int ctpmv_(char *, char *, char *, integer *,
complex *, complex *, integer *);
logical upper;
extern /* Subroutine */ int ctpsv_(char *, char *, char *, integer *,
complex *, complex *, integer *);
logical wantz, alleig, indeig, valeig;
extern /* Subroutine */ int xerbla_(char *, integer *), chpgst_(
integer *, char *, integer *, complex *, complex *, integer *), chpevx_(char *, char *, char *, integer *, complex *,
real *, real *, integer *, integer *, real *, integer *, real *,
complex *, integer *, complex *, real *, integer *, integer *,
integer *), cpptrf_(char *, integer *,
complex *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHPGVX computes selected eigenvalues and, optionally, eigenvectors */
/* of a complex generalized Hermitian-definite eigenproblem, of the form */
/* A*x=(lambda)*B*x, A*Bx=(lambda)*x, or B*A*x=(lambda)*x. Here A and */
/* B are assumed to be Hermitian, stored in packed format, and B is also */
/* positive definite. Eigenvalues and eigenvectors can be selected by */
/* specifying either a range of values or a range of indices for the */
/* desired eigenvalues. */
/* Arguments */
/* ========= */
/* ITYPE (input) INTEGER */
/* Specifies the problem type to be solved: */
/* = 1: A*x = (lambda)*B*x */
/* = 2: A*B*x = (lambda)*x */
/* = 3: B*A*x = (lambda)*x */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* RANGE (input) CHARACTER*1 */
/* = 'A': all eigenvalues will be found; */
/* = 'V': all eigenvalues in the half-open interval (VL,VU] */
/* will be found; */
/* = 'I': the IL-th through IU-th eigenvalues will be found. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangles of A and B are stored; */
/* = 'L': Lower triangles of A and B are stored. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* AP (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the Hermitian matrix */
/* A, packed columnwise in a linear array. The j-th column of A */
/* is stored in the array AP as follows: */
/* if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j; */
/* if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n. */
/* On exit, the contents of AP are destroyed. */
/* BP (input/output) COMPLEX array, dimension (N*(N+1)/2) */
/* On entry, the upper or lower triangle of the Hermitian matrix */
/* B, packed columnwise in a linear array. The j-th column of B */
/* is stored in the array BP as follows: */
/* if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j; */
/* if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n. */
/* On exit, the triangular factor U or L from the Cholesky */
/* factorization B = U**H*U or B = L*L**H, in the same storage */
/* format as B. */
/* VL (input) REAL */
/* VU (input) REAL */
/* If RANGE='V', the lower and upper bounds of the interval to */
/* be searched for eigenvalues. VL < VU. */
/* Not referenced if RANGE = 'A' or 'I'. */
/* IL (input) INTEGER */
/* IU (input) INTEGER */
/* If RANGE='I', the indices (in ascending order) of the */
/* smallest and largest eigenvalues to be returned. */
/* 1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
/* Not referenced if RANGE = 'A' or 'V'. */
/* ABSTOL (input) REAL */
/* The absolute error tolerance for the eigenvalues. */
/* An approximate eigenvalue is accepted as converged */
/* when it is determined to lie in an interval [a,b] */
/* of width less than or equal to */
/* ABSTOL + EPS * max( |a|,|b| ) , */
/* where EPS is the machine precision. If ABSTOL is less than */
/* or equal to zero, then EPS*|T| will be used in its place, */
/* where |T| is the 1-norm of the tridiagonal matrix obtained */
/* by reducing AP to tridiagonal form. */
/* Eigenvalues will be computed most accurately when ABSTOL is */
/* set to twice the underflow threshold 2*SLAMCH('S'), not zero. */
/* If this routine returns with INFO>0, indicating that some */
/* eigenvectors did not converge, try setting ABSTOL to */
/* 2*SLAMCH('S'). */
/* M (output) INTEGER */
/* The total number of eigenvalues found. 0 <= M <= N. */
/* If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
/* W (output) REAL array, dimension (N) */
/* On normal exit, the first M elements contain the selected */
/* eigenvalues in ascending order. */
/* Z (output) COMPLEX array, dimension (LDZ, N) */
/* If JOBZ = 'N', then Z is not referenced. */
/* If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
/* contain the orthonormal eigenvectors of the matrix A */
/* corresponding to the selected eigenvalues, with the i-th */
/* column of Z holding the eigenvector associated with W(i). */
/* The eigenvectors are normalized as follows: */
/* if ITYPE = 1 or 2, Z**H*B*Z = I; */
/* if ITYPE = 3, Z**H*inv(B)*Z = I. */
/* If an eigenvector fails to converge, then that column of Z */
/* contains the latest approximation to the eigenvector, and the */
/* index of the eigenvector is returned in IFAIL. */
/* Note: the user must ensure that at least max(1,M) columns are */
/* supplied in the array Z; if RANGE = 'V', the exact value of M */
/* is not known in advance and an upper bound must be used. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= max(1,N). */
/* WORK (workspace) COMPLEX array, dimension (2*N) */
/* RWORK (workspace) REAL array, dimension (7*N) */
/* IWORK (workspace) INTEGER array, dimension (5*N) */
/* IFAIL (output) INTEGER array, dimension (N) */
/* If JOBZ = 'V', then if INFO = 0, the first M elements of */
/* IFAIL are zero. If INFO > 0, then IFAIL contains the */
/* indices of the eigenvectors that failed to converge. */
/* If JOBZ = 'N', then IFAIL is not referenced. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: CPPTRF or CHPEVX returned an error code: */
/* <= N: if INFO = i, CHPEVX failed to converge; */
/* i eigenvectors failed to converge. Their indices */
/* are stored in array IFAIL. */
/* > N: if INFO = N + i, for 1 <= i <= n, then the leading */
/* minor of order i of B is not positive definite. */
/* The factorization of B could not be completed and */
/* no eigenvalues or eigenvectors were computed. */
/* Further Details */
/* =============== */
/* Based on contributions by */
/* Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
--ap;
--bp;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
--iwork;
--ifail;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
alleig = lsame_(range, "A");
valeig = lsame_(range, "V");
indeig = lsame_(range, "I");
*info = 0;
if (*itype < 1 || *itype > 3) {
*info = -1;
} else if (! (wantz || lsame_(jobz, "N"))) {
*info = -2;
} else if (! (alleig || valeig || indeig)) {
*info = -3;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -4;
} else if (*n < 0) {
*info = -5;
} else {
if (valeig) {
if (*n > 0 && *vu <= *vl) {
*info = -9;
}
} else if (indeig) {
if (*il < 1) {
*info = -10;
} else if (*iu < min(*n,*il) || *iu > *n) {
*info = -11;
}
}
}
if (*info == 0) {
if (*ldz < 1 || wantz && *ldz < *n) {
*info = -16;
}
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHPGVX", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a Cholesky factorization of B. */
cpptrf_(uplo, n, &bp[1], info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem and solve. */
chpgst_(itype, uplo, n, &ap[1], &bp[1], info);
chpevx_(jobz, range, uplo, n, &ap[1], vl, vu, il, iu, abstol, m, &w[1], &
z__[z_offset], ldz, &work[1], &rwork[1], &iwork[1], &ifail[1],
info);
if (wantz) {
/* Backtransform eigenvectors to the original problem. */
if (*info > 0) {
*m = *info - 1;
}
if (*itype == 1 || *itype == 2) {
/* For A*x=(lambda)*B*x and A*B*x=(lambda)*x; */
/* backtransform eigenvectors: x = inv(L)'*y or inv(U)*y */
if (upper) {
*(unsigned char *)trans = 'N';
} else {
*(unsigned char *)trans = 'C';
}
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
ctpsv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
1], &c__1);
/* L10: */
}
} else if (*itype == 3) {
/* For B*A*x=(lambda)*x; */
/* backtransform eigenvectors: x = L*y or U'*y */
if (upper) {
*(unsigned char *)trans = 'C';
} else {
*(unsigned char *)trans = 'N';
}
i__1 = *m;
for (j = 1; j <= i__1; ++j) {
ctpmv_(uplo, trans, "Non-unit", n, &bp[1], &z__[j * z_dim1 +
1], &c__1);
/* L20: */
}
}
}
return 0;
/* End of CHPGVX */
} /* chpgvx_ */