/* chfrk.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int chfrk_(char *transr, char *uplo, char *trans, integer *n,
integer *k, real *alpha, complex *a, integer *lda, real *beta,
complex *c__)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2;
complex q__1;
/* Local variables */
integer j, n1, n2, nk, info;
complex cbeta;
logical normaltransr;
extern /* Subroutine */ int cgemm_(char *, char *, integer *, integer *,
integer *, complex *, complex *, integer *, complex *, integer *,
complex *, complex *, integer *), cherk_(char *,
char *, integer *, integer *, real *, complex *, integer *, real *
, complex *, integer *);
extern logical lsame_(char *, char *);
integer nrowa;
logical lower;
complex calpha;
extern /* Subroutine */ int xerbla_(char *, integer *);
logical nisodd, notrans;
/* -- LAPACK routine (version 3.2) -- */
/* -- Contributed by Julien Langou of the Univ. of Colorado Denver -- */
/* -- November 2008 -- */
/* -- LAPACK is a software package provided by Univ. of Tennessee, -- */
/* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
/* .. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* Level 3 BLAS like routine for C in RFP Format. */
/* CHFRK performs one of the Hermitian rank--k operations */
/* C := alpha*A*conjg( A' ) + beta*C, */
/* or */
/* C := alpha*conjg( A' )*A + beta*C, */
/* where alpha and beta are real scalars, C is an n--by--n Hermitian */
/* matrix and A is an n--by--k matrix in the first case and a k--by--n */
/* matrix in the second case. */
/* Arguments */
/* ========== */
/* TRANSR - (input) CHARACTER. */
/* = 'N': The Normal Form of RFP A is stored; */
/* = 'C': The Conjugate-transpose Form of RFP A is stored. */
/* UPLO - (input) CHARACTER. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the array C is to be referenced as */
/* follows: */
/* UPLO = 'U' or 'u' Only the upper triangular part of C */
/* is to be referenced. */
/* UPLO = 'L' or 'l' Only the lower triangular part of C */
/* is to be referenced. */
/* Unchanged on exit. */
/* TRANS - (input) CHARACTER. */
/* On entry, TRANS specifies the operation to be performed as */
/* follows: */
/* TRANS = 'N' or 'n' C := alpha*A*conjg( A' ) + beta*C. */
/* TRANS = 'C' or 'c' C := alpha*conjg( A' )*A + beta*C. */
/* Unchanged on exit. */
/* N - (input) INTEGER. */
/* On entry, N specifies the order of the matrix C. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* K - (input) INTEGER. */
/* On entry with TRANS = 'N' or 'n', K specifies the number */
/* of columns of the matrix A, and on entry with */
/* TRANS = 'C' or 'c', K specifies the number of rows of the */
/* matrix A. K must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - (input) REAL. */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - (input) COMPLEX array of DIMENSION ( LDA, ka ), where KA */
/* is K when TRANS = 'N' or 'n', and is N otherwise. Before */
/* entry with TRANS = 'N' or 'n', the leading N--by--K part of */
/* the array A must contain the matrix A, otherwise the leading */
/* K--by--N part of the array A must contain the matrix A. */
/* Unchanged on exit. */
/* LDA - (input) INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When TRANS = 'N' or 'n' */
/* then LDA must be at least max( 1, n ), otherwise LDA must */
/* be at least max( 1, k ). */
/* Unchanged on exit. */
/* BETA - (input) REAL. */
/* On entry, BETA specifies the scalar beta. */
/* Unchanged on exit. */
/* C - (input/output) COMPLEX array, dimension ( N*(N+1)/2 ). */
/* On entry, the matrix A in RFP Format. RFP Format is */
/* described by TRANSR, UPLO and N. Note that the imaginary */
/* parts of the diagonal elements need not be set, they are */
/* assumed to be zero, and on exit they are set to zero. */
/* Arguments */
/* ========== */
/* .. */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--c__;
/* Function Body */
info = 0;
normaltransr = lsame_(transr, "N");
lower = lsame_(uplo, "L");
notrans = lsame_(trans, "N");
if (notrans) {
nrowa = *n;
} else {
nrowa = *k;
}
if (! normaltransr && ! lsame_(transr, "C")) {
info = -1;
} else if (! lower && ! lsame_(uplo, "U")) {
info = -2;
} else if (! notrans && ! lsame_(trans, "C")) {
info = -3;
} else if (*n < 0) {
info = -4;
} else if (*k < 0) {
info = -5;
} else if (*lda < max(1,nrowa)) {
info = -8;
}
if (info != 0) {
i__1 = -info;
xerbla_("CHFRK ", &i__1);
return 0;
}
/* Quick return if possible. */
/* The quick return case: ((ALPHA.EQ.0).AND.(BETA.NE.ZERO)) is not */
/* done (it is in CHERK for example) and left in the general case. */
if (*n == 0 || (*alpha == 0.f || *k == 0) && *beta == 1.f) {
return 0;
}
if (*alpha == 0.f && *beta == 0.f) {
i__1 = *n * (*n + 1) / 2;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
c__[i__2].r = 0.f, c__[i__2].i = 0.f;
}
return 0;
}
q__1.r = *alpha, q__1.i = 0.f;
calpha.r = q__1.r, calpha.i = q__1.i;
q__1.r = *beta, q__1.i = 0.f;
cbeta.r = q__1.r, cbeta.i = q__1.i;
/* C is N-by-N. */
/* If N is odd, set NISODD = .TRUE., and N1 and N2. */
/* If N is even, NISODD = .FALSE., and NK. */
if (*n % 2 == 0) {
nisodd = FALSE_;
nk = *n / 2;
} else {
nisodd = TRUE_;
if (lower) {
n2 = *n / 2;
n1 = *n - n2;
} else {
n1 = *n / 2;
n2 = *n - n1;
}
}
if (nisodd) {
/* N is odd */
if (normaltransr) {
/* N is odd and TRANSR = 'N' */
if (lower) {
/* N is odd, TRANSR = 'N', and UPLO = 'L' */
if (notrans) {
/* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
cherk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[1], n);
cherk_("U", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
beta, &c__[*n + 1], n);
cgemm_("N", "C", &n2, &n1, k, &calpha, &a[n1 + 1 + a_dim1]
, lda, &a[a_dim1 + 1], lda, &cbeta, &c__[n1 + 1],
n);
} else {
/* N is odd, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' */
cherk_("L", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[1], n);
cherk_("U", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
lda, beta, &c__[*n + 1], n)
;
cgemm_("C", "N", &n2, &n1, k, &calpha, &a[(n1 + 1) *
a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
c__[n1 + 1], n);
}
} else {
/* N is odd, TRANSR = 'N', and UPLO = 'U' */
if (notrans) {
/* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
cherk_("L", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[n2 + 1], n);
cherk_("U", "N", &n2, k, alpha, &a[n2 + a_dim1], lda,
beta, &c__[n1 + 1], n);
cgemm_("N", "C", &n1, &n2, k, &calpha, &a[a_dim1 + 1],
lda, &a[n2 + a_dim1], lda, &cbeta, &c__[1], n);
} else {
/* N is odd, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' */
cherk_("L", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[n2 + 1], n);
cherk_("U", "C", &n2, k, alpha, &a[n2 * a_dim1 + 1], lda,
beta, &c__[n1 + 1], n);
cgemm_("C", "N", &n1, &n2, k, &calpha, &a[a_dim1 + 1],
lda, &a[n2 * a_dim1 + 1], lda, &cbeta, &c__[1], n);
}
}
} else {
/* N is odd, and TRANSR = 'C' */
if (lower) {
/* N is odd, TRANSR = 'C', and UPLO = 'L' */
if (notrans) {
/* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' */
cherk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[1], &n1);
cherk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
beta, &c__[2], &n1);
cgemm_("N", "C", &n1, &n2, k, &calpha, &a[a_dim1 + 1],
lda, &a[n1 + 1 + a_dim1], lda, &cbeta, &c__[n1 *
n1 + 1], &n1);
} else {
/* N is odd, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' */
cherk_("U", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[1], &n1);
cherk_("L", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
lda, beta, &c__[2], &n1);
cgemm_("C", "N", &n1, &n2, k, &calpha, &a[a_dim1 + 1],
lda, &a[(n1 + 1) * a_dim1 + 1], lda, &cbeta, &c__[
n1 * n1 + 1], &n1);
}
} else {
/* N is odd, TRANSR = 'C', and UPLO = 'U' */
if (notrans) {
/* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' */
cherk_("U", "N", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[n2 * n2 + 1], &n2);
cherk_("L", "N", &n2, k, alpha, &a[n1 + 1 + a_dim1], lda,
beta, &c__[n1 * n2 + 1], &n2);
cgemm_("N", "C", &n2, &n1, k, &calpha, &a[n1 + 1 + a_dim1]
, lda, &a[a_dim1 + 1], lda, &cbeta, &c__[1], &n2);
} else {
/* N is odd, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' */
cherk_("U", "C", &n1, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[n2 * n2 + 1], &n2);
cherk_("L", "C", &n2, k, alpha, &a[(n1 + 1) * a_dim1 + 1],
lda, beta, &c__[n1 * n2 + 1], &n2);
cgemm_("C", "N", &n2, &n1, k, &calpha, &a[(n1 + 1) *
a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
c__[1], &n2);
}
}
}
} else {
/* N is even */
if (normaltransr) {
/* N is even and TRANSR = 'N' */
if (lower) {
/* N is even, TRANSR = 'N', and UPLO = 'L' */
if (notrans) {
/* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'N' */
i__1 = *n + 1;
cherk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[2], &i__1);
i__1 = *n + 1;
cherk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
beta, &c__[1], &i__1);
i__1 = *n + 1;
cgemm_("N", "C", &nk, &nk, k, &calpha, &a[nk + 1 + a_dim1]
, lda, &a[a_dim1 + 1], lda, &cbeta, &c__[nk + 2],
&i__1);
} else {
/* N is even, TRANSR = 'N', UPLO = 'L', and TRANS = 'C' */
i__1 = *n + 1;
cherk_("L", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[2], &i__1);
i__1 = *n + 1;
cherk_("U", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
lda, beta, &c__[1], &i__1);
i__1 = *n + 1;
cgemm_("C", "N", &nk, &nk, k, &calpha, &a[(nk + 1) *
a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
c__[nk + 2], &i__1);
}
} else {
/* N is even, TRANSR = 'N', and UPLO = 'U' */
if (notrans) {
/* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'N' */
i__1 = *n + 1;
cherk_("L", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk + 2], &i__1);
i__1 = *n + 1;
cherk_("U", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
beta, &c__[nk + 1], &i__1);
i__1 = *n + 1;
cgemm_("N", "C", &nk, &nk, k, &calpha, &a[a_dim1 + 1],
lda, &a[nk + 1 + a_dim1], lda, &cbeta, &c__[1], &
i__1);
} else {
/* N is even, TRANSR = 'N', UPLO = 'U', and TRANS = 'C' */
i__1 = *n + 1;
cherk_("L", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk + 2], &i__1);
i__1 = *n + 1;
cherk_("U", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
lda, beta, &c__[nk + 1], &i__1);
i__1 = *n + 1;
cgemm_("C", "N", &nk, &nk, k, &calpha, &a[a_dim1 + 1],
lda, &a[(nk + 1) * a_dim1 + 1], lda, &cbeta, &c__[
1], &i__1);
}
}
} else {
/* N is even, and TRANSR = 'C' */
if (lower) {
/* N is even, TRANSR = 'C', and UPLO = 'L' */
if (notrans) {
/* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'N' */
cherk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk + 1], &nk);
cherk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
beta, &c__[1], &nk);
cgemm_("N", "C", &nk, &nk, k, &calpha, &a[a_dim1 + 1],
lda, &a[nk + 1 + a_dim1], lda, &cbeta, &c__[(nk +
1) * nk + 1], &nk);
} else {
/* N is even, TRANSR = 'C', UPLO = 'L', and TRANS = 'C' */
cherk_("U", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk + 1], &nk);
cherk_("L", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
lda, beta, &c__[1], &nk);
cgemm_("C", "N", &nk, &nk, k, &calpha, &a[a_dim1 + 1],
lda, &a[(nk + 1) * a_dim1 + 1], lda, &cbeta, &c__[
(nk + 1) * nk + 1], &nk);
}
} else {
/* N is even, TRANSR = 'C', and UPLO = 'U' */
if (notrans) {
/* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'N' */
cherk_("U", "N", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk * (nk + 1) + 1], &nk);
cherk_("L", "N", &nk, k, alpha, &a[nk + 1 + a_dim1], lda,
beta, &c__[nk * nk + 1], &nk);
cgemm_("N", "C", &nk, &nk, k, &calpha, &a[nk + 1 + a_dim1]
, lda, &a[a_dim1 + 1], lda, &cbeta, &c__[1], &nk);
} else {
/* N is even, TRANSR = 'C', UPLO = 'U', and TRANS = 'C' */
cherk_("U", "C", &nk, k, alpha, &a[a_dim1 + 1], lda, beta,
&c__[nk * (nk + 1) + 1], &nk);
cherk_("L", "C", &nk, k, alpha, &a[(nk + 1) * a_dim1 + 1],
lda, beta, &c__[nk * nk + 1], &nk);
cgemm_("C", "N", &nk, &nk, k, &calpha, &a[(nk + 1) *
a_dim1 + 1], lda, &a[a_dim1 + 1], lda, &cbeta, &
c__[1], &nk);
}
}
}
}
return 0;
/* End of CHFRK */
} /* chfrk_ */