/* chesv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
static integer c_n1 = -1;
/* Subroutine */ int chesv_(char *uplo, integer *n, integer *nrhs, complex *a,
integer *lda, integer *ipiv, complex *b, integer *ldb, complex *work,
integer *lwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, i__1;
/* Local variables */
integer nb;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int chetrf_(char *, integer *, complex *, integer
*, integer *, complex *, integer *, integer *), xerbla_(
char *, integer *);
extern integer ilaenv_(integer *, char *, char *, integer *, integer *,
integer *, integer *);
extern /* Subroutine */ int chetrs_(char *, integer *, integer *, complex
*, integer *, integer *, complex *, integer *, integer *);
integer lwkopt;
logical lquery;
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHESV computes the solution to a complex system of linear equations */
/* A * X = B, */
/* where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS */
/* matrices. */
/* The diagonal pivoting method is used to factor A as */
/* A = U * D * U**H, if UPLO = 'U', or */
/* A = L * D * L**H, if UPLO = 'L', */
/* where U (or L) is a product of permutation and unit upper (lower) */
/* triangular matrices, and D is Hermitian and block diagonal with */
/* 1-by-1 and 2-by-2 diagonal blocks. The factored form of A is then */
/* used to solve the system of equations A * X = B. */
/* Arguments */
/* ========= */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangle of A is stored; */
/* = 'L': Lower triangle of A is stored. */
/* N (input) INTEGER */
/* The number of linear equations, i.e., the order of the */
/* matrix A. N >= 0. */
/* NRHS (input) INTEGER */
/* The number of right hand sides, i.e., the number of columns */
/* of the matrix B. NRHS >= 0. */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the Hermitian matrix A. If UPLO = 'U', the leading */
/* N-by-N upper triangular part of A contains the upper */
/* triangular part of the matrix A, and the strictly lower */
/* triangular part of A is not referenced. If UPLO = 'L', the */
/* leading N-by-N lower triangular part of A contains the lower */
/* triangular part of the matrix A, and the strictly upper */
/* triangular part of A is not referenced. */
/* On exit, if INFO = 0, the block diagonal matrix D and the */
/* multipliers used to obtain the factor U or L from the */
/* factorization A = U*D*U**H or A = L*D*L**H as computed by */
/* CHETRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* IPIV (output) INTEGER array, dimension (N) */
/* Details of the interchanges and the block structure of D, as */
/* determined by CHETRF. If IPIV(k) > 0, then rows and columns */
/* k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1 */
/* diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, */
/* then rows and columns k-1 and -IPIV(k) were interchanged and */
/* D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and */
/* IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and */
/* -IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2 */
/* diagonal block. */
/* B (input/output) COMPLEX array, dimension (LDB,NRHS) */
/* On entry, the N-by-NRHS right hand side matrix B. */
/* On exit, if INFO = 0, the N-by-NRHS solution matrix X. */
/* LDB (input) INTEGER */
/* The leading dimension of the array B. LDB >= max(1,N). */
/* WORK (workspace/output) COMPLEX array, dimension (MAX(1,LWORK)) */
/* On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
/* LWORK (input) INTEGER */
/* The length of WORK. LWORK >= 1, and for best performance */
/* LWORK >= max(1,N*NB), where NB is the optimal blocksize for */
/* CHETRF. */
/* If LWORK = -1, then a workspace query is assumed; the routine */
/* only calculates the optimal size of the WORK array, returns */
/* this value as the first entry of the WORK array, and no error */
/* message related to LWORK is issued by XERBLA. */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, D(i,i) is exactly zero. The factorization */
/* has been completed, but the block diagonal matrix D is */
/* exactly singular, so the solution could not be computed. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--ipiv;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
--work;
/* Function Body */
*info = 0;
lquery = *lwork == -1;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*nrhs < 0) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
} else if (*ldb < max(1,*n)) {
*info = -8;
} else if (*lwork < 1 && ! lquery) {
*info = -10;
}
if (*info == 0) {
if (*n == 0) {
lwkopt = 1;
} else {
nb = ilaenv_(&c__1, "CHETRF", uplo, n, &c_n1, &c_n1, &c_n1);
lwkopt = *n * nb;
}
work[1].r = (real) lwkopt, work[1].i = 0.f;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHESV ", &i__1);
return 0;
} else if (lquery) {
return 0;
}
/* Compute the factorization A = U*D*U' or A = L*D*L'. */
chetrf_(uplo, n, &a[a_offset], lda, &ipiv[1], &work[1], lwork, info);
if (*info == 0) {
/* Solve the system A*X = B, overwriting B with X. */
chetrs_(uplo, n, nrhs, &a[a_offset], lda, &ipiv[1], &b[b_offset], ldb,
info);
}
work[1].r = (real) lwkopt, work[1].i = 0.f;
return 0;
/* End of CHESV */
} /* chesv_ */