/* chbgv.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int chbgv_(char *jobz, char *uplo, integer *n, integer *ka,
integer *kb, complex *ab, integer *ldab, complex *bb, integer *ldbb,
real *w, complex *z__, integer *ldz, complex *work, real *rwork,
integer *info)
{
/* System generated locals */
integer ab_dim1, ab_offset, bb_dim1, bb_offset, z_dim1, z_offset, i__1;
/* Local variables */
integer inde;
char vect[1];
extern logical lsame_(char *, char *);
integer iinfo;
logical upper, wantz;
extern /* Subroutine */ int chbtrd_(char *, char *, integer *, integer *,
complex *, integer *, real *, real *, complex *, integer *,
complex *, integer *), chbgst_(char *, char *,
integer *, integer *, integer *, complex *, integer *, complex *,
integer *, complex *, integer *, complex *, real *, integer *), xerbla_(char *, integer *), cpbstf_(char
*, integer *, integer *, complex *, integer *, integer *);
integer indwrk;
extern /* Subroutine */ int csteqr_(char *, integer *, real *, real *,
complex *, integer *, real *, integer *), ssterf_(integer
*, real *, real *, integer *);
/* -- LAPACK driver routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHBGV computes all the eigenvalues, and optionally, the eigenvectors */
/* of a complex generalized Hermitian-definite banded eigenproblem, of */
/* the form A*x=(lambda)*B*x. Here A and B are assumed to be Hermitian */
/* and banded, and B is also positive definite. */
/* Arguments */
/* ========= */
/* JOBZ (input) CHARACTER*1 */
/* = 'N': Compute eigenvalues only; */
/* = 'V': Compute eigenvalues and eigenvectors. */
/* UPLO (input) CHARACTER*1 */
/* = 'U': Upper triangles of A and B are stored; */
/* = 'L': Lower triangles of A and B are stored. */
/* N (input) INTEGER */
/* The order of the matrices A and B. N >= 0. */
/* KA (input) INTEGER */
/* The number of superdiagonals of the matrix A if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KA >= 0. */
/* KB (input) INTEGER */
/* The number of superdiagonals of the matrix B if UPLO = 'U', */
/* or the number of subdiagonals if UPLO = 'L'. KB >= 0. */
/* AB (input/output) COMPLEX array, dimension (LDAB, N) */
/* On entry, the upper or lower triangle of the Hermitian band */
/* matrix A, stored in the first ka+1 rows of the array. The */
/* j-th column of A is stored in the j-th column of the array AB */
/* as follows: */
/* if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; */
/* if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). */
/* On exit, the contents of AB are destroyed. */
/* LDAB (input) INTEGER */
/* The leading dimension of the array AB. LDAB >= KA+1. */
/* BB (input/output) COMPLEX array, dimension (LDBB, N) */
/* On entry, the upper or lower triangle of the Hermitian band */
/* matrix B, stored in the first kb+1 rows of the array. The */
/* j-th column of B is stored in the j-th column of the array BB */
/* as follows: */
/* if UPLO = 'U', BB(kb+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; */
/* if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). */
/* On exit, the factor S from the split Cholesky factorization */
/* B = S**H*S, as returned by CPBSTF. */
/* LDBB (input) INTEGER */
/* The leading dimension of the array BB. LDBB >= KB+1. */
/* W (output) REAL array, dimension (N) */
/* If INFO = 0, the eigenvalues in ascending order. */
/* Z (output) COMPLEX array, dimension (LDZ, N) */
/* If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of */
/* eigenvectors, with the i-th column of Z holding the */
/* eigenvector associated with W(i). The eigenvectors are */
/* normalized so that Z**H*B*Z = I. */
/* If JOBZ = 'N', then Z is not referenced. */
/* LDZ (input) INTEGER */
/* The leading dimension of the array Z. LDZ >= 1, and if */
/* JOBZ = 'V', LDZ >= N. */
/* WORK (workspace) COMPLEX array, dimension (N) */
/* RWORK (workspace) REAL array, dimension (3*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* > 0: if INFO = i, and i is: */
/* <= N: the algorithm failed to converge: */
/* i off-diagonal elements of an intermediate */
/* tridiagonal form did not converge to zero; */
/* > N: if INFO = N + i, for 1 <= i <= N, then CPBSTF */
/* returned INFO = i: B is not positive definite. */
/* The factorization of B could not be completed and */
/* no eigenvalues or eigenvectors were computed. */
/* ===================================================================== */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
ab_dim1 = *ldab;
ab_offset = 1 + ab_dim1;
ab -= ab_offset;
bb_dim1 = *ldbb;
bb_offset = 1 + bb_dim1;
bb -= bb_offset;
--w;
z_dim1 = *ldz;
z_offset = 1 + z_dim1;
z__ -= z_offset;
--work;
--rwork;
/* Function Body */
wantz = lsame_(jobz, "V");
upper = lsame_(uplo, "U");
*info = 0;
if (! (wantz || lsame_(jobz, "N"))) {
*info = -1;
} else if (! (upper || lsame_(uplo, "L"))) {
*info = -2;
} else if (*n < 0) {
*info = -3;
} else if (*ka < 0) {
*info = -4;
} else if (*kb < 0 || *kb > *ka) {
*info = -5;
} else if (*ldab < *ka + 1) {
*info = -7;
} else if (*ldbb < *kb + 1) {
*info = -9;
} else if (*ldz < 1 || wantz && *ldz < *n) {
*info = -12;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CHBGV ", &i__1);
return 0;
}
/* Quick return if possible */
if (*n == 0) {
return 0;
}
/* Form a split Cholesky factorization of B. */
cpbstf_(uplo, n, kb, &bb[bb_offset], ldbb, info);
if (*info != 0) {
*info = *n + *info;
return 0;
}
/* Transform problem to standard eigenvalue problem. */
inde = 1;
indwrk = inde + *n;
chbgst_(jobz, uplo, n, ka, kb, &ab[ab_offset], ldab, &bb[bb_offset], ldbb,
&z__[z_offset], ldz, &work[1], &rwork[indwrk], &iinfo);
/* Reduce to tridiagonal form. */
if (wantz) {
*(unsigned char *)vect = 'U';
} else {
*(unsigned char *)vect = 'N';
}
chbtrd_(vect, uplo, n, ka, &ab[ab_offset], ldab, &w[1], &rwork[inde], &
z__[z_offset], ldz, &work[1], &iinfo);
/* For eigenvalues only, call SSTERF. For eigenvectors, call CSTEQR. */
if (! wantz) {
ssterf_(n, &w[1], &rwork[inde], info);
} else {
csteqr_(jobz, n, &w[1], &rwork[inde], &z__[z_offset], ldz, &rwork[
indwrk], info);
}
return 0;
/* End of CHBGV */
} /* chbgv_ */