/* cgtcon.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int cgtcon_(char *norm, integer *n, complex *dl, complex *
d__, complex *du, complex *du2, integer *ipiv, real *anorm, real *
rcond, complex *work, integer *info)
{
/* System generated locals */
integer i__1, i__2;
/* Local variables */
integer i__, kase, kase1;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
*, integer *, integer *), xerbla_(char *, integer *);
real ainvnm;
logical onenrm;
extern /* Subroutine */ int cgttrs_(char *, integer *, integer *, complex
*, complex *, complex *, complex *, integer *, complex *, integer
*, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CGTCON estimates the reciprocal of the condition number of a complex */
/* tridiagonal matrix A using the LU factorization as computed by */
/* CGTTRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))). */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies whether the 1-norm condition number or the */
/* infinity-norm condition number is required: */
/* = '1' or 'O': 1-norm; */
/* = 'I': Infinity-norm. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* DL (input) COMPLEX array, dimension (N-1) */
/* The (n-1) multipliers that define the matrix L from the */
/* LU factorization of A as computed by CGTTRF. */
/* D (input) COMPLEX array, dimension (N) */
/* The n diagonal elements of the upper triangular matrix U from */
/* the LU factorization of A. */
/* DU (input) COMPLEX array, dimension (N-1) */
/* The (n-1) elements of the first superdiagonal of U. */
/* DU2 (input) COMPLEX array, dimension (N-2) */
/* The (n-2) elements of the second superdiagonal of U. */
/* IPIV (input) INTEGER array, dimension (N) */
/* The pivot indices; for 1 <= i <= n, row i of the matrix was */
/* interchanged with row IPIV(i). IPIV(i) will always be either */
/* i or i+1; IPIV(i) = i indicates a row interchange was not */
/* required. */
/* ANORM (input) REAL */
/* If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* If NORM = 'I', the infinity-norm of the original matrix A. */
/* RCOND (output) REAL */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an */
/* estimate of the 1-norm of inv(A) computed in this routine. */
/* WORK (workspace) COMPLEX array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input arguments. */
/* Parameter adjustments */
--work;
--ipiv;
--du2;
--du;
--d__;
--dl;
/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*anorm < 0.f) {
*info = -8;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGTCON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.f;
if (*n == 0) {
*rcond = 1.f;
return 0;
} else if (*anorm == 0.f) {
return 0;
}
/* Check that D(1:N) is non-zero. */
i__1 = *n;
for (i__ = 1; i__ <= i__1; ++i__) {
i__2 = i__;
if (d__[i__2].r == 0.f && d__[i__2].i == 0.f) {
return 0;
}
/* L10: */
}
ainvnm = 0.f;
if (onenrm) {
kase1 = 1;
} else {
kase1 = 2;
}
kase = 0;
L20:
clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == kase1) {
/* Multiply by inv(U)*inv(L). */
cgttrs_("No transpose", n, &c__1, &dl[1], &d__[1], &du[1], &du2[1]
, &ipiv[1], &work[1], n, info);
} else {
/* Multiply by inv(L')*inv(U'). */
cgttrs_("Conjugate transpose", n, &c__1, &dl[1], &d__[1], &du[1],
&du2[1], &ipiv[1], &work[1], n, info);
}
goto L20;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f) {
*rcond = 1.f / ainvnm / *anorm;
}
return 0;
/* End of CGTCON */
} /* cgtcon_ */