/* cgehd2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int cgehd2_(integer *n, integer *ilo, integer *ihi, complex *
a, integer *lda, complex *tau, complex *work, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3;
complex q__1;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__;
complex alpha;
extern /* Subroutine */ int clarf_(char *, integer *, integer *, complex *
, integer *, complex *, complex *, integer *, complex *),
clarfg_(integer *, complex *, complex *, integer *, complex *),
xerbla_(char *, integer *);
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CGEHD2 reduces a complex general matrix A to upper Hessenberg form H */
/* by a unitary similarity transformation: Q' * A * Q = H . */
/* Arguments */
/* ========= */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* ILO (input) INTEGER */
/* IHI (input) INTEGER */
/* It is assumed that A is already upper triangular in rows */
/* and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally */
/* set by a previous call to CGEBAL; otherwise they should be */
/* set to 1 and N respectively. See Further Details. */
/* 1 <= ILO <= IHI <= max(1,N). */
/* A (input/output) COMPLEX array, dimension (LDA,N) */
/* On entry, the n by n general matrix to be reduced. */
/* On exit, the upper triangle and the first subdiagonal of A */
/* are overwritten with the upper Hessenberg matrix H, and the */
/* elements below the first subdiagonal, with the array TAU, */
/* represent the unitary matrix Q as a product of elementary */
/* reflectors. See Further Details. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* TAU (output) COMPLEX array, dimension (N-1) */
/* The scalar factors of the elementary reflectors (see Further */
/* Details). */
/* WORK (workspace) COMPLEX array, dimension (N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value. */
/* Further Details */
/* =============== */
/* The matrix Q is represented as a product of (ihi-ilo) elementary */
/* reflectors */
/* Q = H(ilo) H(ilo+1) . . . H(ihi-1). */
/* Each H(i) has the form */
/* H(i) = I - tau * v * v' */
/* where tau is a complex scalar, and v is a complex vector with */
/* v(1:i) = 0, v(i+1) = 1 and v(ihi+1:n) = 0; v(i+2:ihi) is stored on */
/* exit in A(i+2:ihi,i), and tau in TAU(i). */
/* The contents of A are illustrated by the following example, with */
/* n = 7, ilo = 2 and ihi = 6: */
/* on entry, on exit, */
/* ( a a a a a a a ) ( a a h h h h a ) */
/* ( a a a a a a ) ( a h h h h a ) */
/* ( a a a a a a ) ( h h h h h h ) */
/* ( a a a a a a ) ( v2 h h h h h ) */
/* ( a a a a a a ) ( v2 v3 h h h h ) */
/* ( a a a a a a ) ( v2 v3 v4 h h h ) */
/* ( a ) ( a ) */
/* where a denotes an element of the original matrix A, h denotes a */
/* modified element of the upper Hessenberg matrix H, and vi denotes an */
/* element of the vector defining H(i). */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--tau;
--work;
/* Function Body */
*info = 0;
if (*n < 0) {
*info = -1;
} else if (*ilo < 1 || *ilo > max(1,*n)) {
*info = -2;
} else if (*ihi < min(*ilo,*n) || *ihi > *n) {
*info = -3;
} else if (*lda < max(1,*n)) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGEHD2", &i__1);
return 0;
}
i__1 = *ihi - 1;
for (i__ = *ilo; i__ <= i__1; ++i__) {
/* Compute elementary reflector H(i) to annihilate A(i+2:ihi,i) */
i__2 = i__ + 1 + i__ * a_dim1;
alpha.r = a[i__2].r, alpha.i = a[i__2].i;
i__2 = *ihi - i__;
/* Computing MIN */
i__3 = i__ + 2;
clarfg_(&i__2, &alpha, &a[min(i__3, *n)+ i__ * a_dim1], &c__1, &tau[
i__]);
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = 1.f, a[i__2].i = 0.f;
/* Apply H(i) to A(1:ihi,i+1:ihi) from the right */
i__2 = *ihi - i__;
clarf_("Right", ihi, &i__2, &a[i__ + 1 + i__ * a_dim1], &c__1, &tau[
i__], &a[(i__ + 1) * a_dim1 + 1], lda, &work[1]);
/* Apply H(i)' to A(i+1:ihi,i+1:n) from the left */
i__2 = *ihi - i__;
i__3 = *n - i__;
r_cnjg(&q__1, &tau[i__]);
clarf_("Left", &i__2, &i__3, &a[i__ + 1 + i__ * a_dim1], &c__1, &q__1,
&a[i__ + 1 + (i__ + 1) * a_dim1], lda, &work[1]);
i__2 = i__ + 1 + i__ * a_dim1;
a[i__2].r = alpha.r, a[i__2].i = alpha.i;
/* L10: */
}
return 0;
/* End of CGEHD2 */
} /* cgehd2_ */