/* cgecon.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Table of constant values */
static integer c__1 = 1;
/* Subroutine */ int cgecon_(char *norm, integer *n, complex *a, integer *lda,
real *anorm, real *rcond, complex *work, real *rwork, integer *info)
{
/* System generated locals */
integer a_dim1, a_offset, i__1;
real r__1, r__2;
/* Builtin functions */
double r_imag(complex *);
/* Local variables */
real sl;
integer ix;
real su;
integer kase, kase1;
real scale;
extern logical lsame_(char *, char *);
integer isave[3];
extern /* Subroutine */ int clacn2_(integer *, complex *, complex *, real
*, integer *, integer *);
extern integer icamax_(integer *, complex *, integer *);
extern doublereal slamch_(char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
real ainvnm;
extern /* Subroutine */ int clatrs_(char *, char *, char *, char *,
integer *, complex *, integer *, complex *, real *, real *,
integer *), csrscl_(integer *,
real *, complex *, integer *);
logical onenrm;
char normin[1];
real smlnum;
/* -- LAPACK routine (version 3.2) -- */
/* Univ. of Tennessee, Univ. of California Berkeley and NAG Ltd.. */
/* November 2006 */
/* Modified to call CLACN2 in place of CLACON, 10 Feb 03, SJH. */
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CGECON estimates the reciprocal of the condition number of a general */
/* complex matrix A, in either the 1-norm or the infinity-norm, using */
/* the LU factorization computed by CGETRF. */
/* An estimate is obtained for norm(inv(A)), and the reciprocal of the */
/* condition number is computed as */
/* RCOND = 1 / ( norm(A) * norm(inv(A)) ). */
/* Arguments */
/* ========= */
/* NORM (input) CHARACTER*1 */
/* Specifies whether the 1-norm condition number or the */
/* infinity-norm condition number is required: */
/* = '1' or 'O': 1-norm; */
/* = 'I': Infinity-norm. */
/* N (input) INTEGER */
/* The order of the matrix A. N >= 0. */
/* A (input) COMPLEX array, dimension (LDA,N) */
/* The factors L and U from the factorization A = P*L*U */
/* as computed by CGETRF. */
/* LDA (input) INTEGER */
/* The leading dimension of the array A. LDA >= max(1,N). */
/* ANORM (input) REAL */
/* If NORM = '1' or 'O', the 1-norm of the original matrix A. */
/* If NORM = 'I', the infinity-norm of the original matrix A. */
/* RCOND (output) REAL */
/* The reciprocal of the condition number of the matrix A, */
/* computed as RCOND = 1/(norm(A) * norm(inv(A))). */
/* WORK (workspace) COMPLEX array, dimension (2*N) */
/* RWORK (workspace) REAL array, dimension (2*N) */
/* INFO (output) INTEGER */
/* = 0: successful exit */
/* < 0: if INFO = -i, the i-th argument had an illegal value */
/* ===================================================================== */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Local Arrays .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Statement Functions .. */
/* .. */
/* .. Statement Function definitions .. */
/* .. */
/* .. Executable Statements .. */
/* Test the input parameters. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
--work;
--rwork;
/* Function Body */
*info = 0;
onenrm = *(unsigned char *)norm == '1' || lsame_(norm, "O");
if (! onenrm && ! lsame_(norm, "I")) {
*info = -1;
} else if (*n < 0) {
*info = -2;
} else if (*lda < max(1,*n)) {
*info = -4;
} else if (*anorm < 0.f) {
*info = -5;
}
if (*info != 0) {
i__1 = -(*info);
xerbla_("CGECON", &i__1);
return 0;
}
/* Quick return if possible */
*rcond = 0.f;
if (*n == 0) {
*rcond = 1.f;
return 0;
} else if (*anorm == 0.f) {
return 0;
}
smlnum = slamch_("Safe minimum");
/* Estimate the norm of inv(A). */
ainvnm = 0.f;
*(unsigned char *)normin = 'N';
if (onenrm) {
kase1 = 1;
} else {
kase1 = 2;
}
kase = 0;
L10:
clacn2_(n, &work[*n + 1], &work[1], &ainvnm, &kase, isave);
if (kase != 0) {
if (kase == kase1) {
/* Multiply by inv(L). */
clatrs_("Lower", "No transpose", "Unit", normin, n, &a[a_offset],
lda, &work[1], &sl, &rwork[1], info);
/* Multiply by inv(U). */
clatrs_("Upper", "No transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info);
} else {
/* Multiply by inv(U'). */
clatrs_("Upper", "Conjugate transpose", "Non-unit", normin, n, &a[
a_offset], lda, &work[1], &su, &rwork[*n + 1], info);
/* Multiply by inv(L'). */
clatrs_("Lower", "Conjugate transpose", "Unit", normin, n, &a[
a_offset], lda, &work[1], &sl, &rwork[1], info);
}
/* Divide X by 1/(SL*SU) if doing so will not cause overflow. */
scale = sl * su;
*(unsigned char *)normin = 'Y';
if (scale != 1.f) {
ix = icamax_(n, &work[1], &c__1);
i__1 = ix;
if (scale < ((r__1 = work[i__1].r, dabs(r__1)) + (r__2 = r_imag(&
work[ix]), dabs(r__2))) * smlnum || scale == 0.f) {
goto L20;
}
csrscl_(n, &scale, &work[1], &c__1);
}
goto L10;
}
/* Compute the estimate of the reciprocal condition number. */
if (ainvnm != 0.f) {
*rcond = 1.f / ainvnm / *anorm;
}
L20:
return 0;
/* End of CGECON */
} /* cgecon_ */