/* zsymm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zsymm_(char *side, char *uplo, integer *m, integer *n,
doublecomplex *alpha, doublecomplex *a, integer *lda, doublecomplex *
b, integer *ldb, doublecomplex *beta, doublecomplex *c__, integer *
ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6;
doublecomplex z__1, z__2, z__3, z__4, z__5;
/* Local variables */
integer i__, j, k, info;
doublecomplex temp1, temp2;
extern logical lsame_(char *, char *);
integer nrowa;
logical upper;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZSYMM performs one of the matrix-matrix operations */
/* C := alpha*A*B + beta*C, */
/* or */
/* C := alpha*B*A + beta*C, */
/* where alpha and beta are scalars, A is a symmetric matrix and B and */
/* C are m by n matrices. */
/* Arguments */
/* ========== */
/* SIDE - CHARACTER*1. */
/* On entry, SIDE specifies whether the symmetric matrix A */
/* appears on the left or right in the operation as follows: */
/* SIDE = 'L' or 'l' C := alpha*A*B + beta*C, */
/* SIDE = 'R' or 'r' C := alpha*B*A + beta*C, */
/* Unchanged on exit. */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the symmetric matrix A is to be */
/* referenced as follows: */
/* UPLO = 'U' or 'u' Only the upper triangular part of the */
/* symmetric matrix is to be referenced. */
/* UPLO = 'L' or 'l' Only the lower triangular part of the */
/* symmetric matrix is to be referenced. */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of the matrix C. */
/* M must be at least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of the matrix C. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is */
/* m when SIDE = 'L' or 'l' and is n otherwise. */
/* Before entry with SIDE = 'L' or 'l', the m by m part of */
/* the array A must contain the symmetric matrix, such that */
/* when UPLO = 'U' or 'u', the leading m by m upper triangular */
/* part of the array A must contain the upper triangular part */
/* of the symmetric matrix and the strictly lower triangular */
/* part of A is not referenced, and when UPLO = 'L' or 'l', */
/* the leading m by m lower triangular part of the array A */
/* must contain the lower triangular part of the symmetric */
/* matrix and the strictly upper triangular part of A is not */
/* referenced. */
/* Before entry with SIDE = 'R' or 'r', the n by n part of */
/* the array A must contain the symmetric matrix, such that */
/* when UPLO = 'U' or 'u', the leading n by n upper triangular */
/* part of the array A must contain the upper triangular part */
/* of the symmetric matrix and the strictly lower triangular */
/* part of A is not referenced, and when UPLO = 'L' or 'l', */
/* the leading n by n lower triangular part of the array A */
/* must contain the lower triangular part of the symmetric */
/* matrix and the strictly upper triangular part of A is not */
/* referenced. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When SIDE = 'L' or 'l' then */
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* B - COMPLEX*16 array of DIMENSION ( LDB, n ). */
/* Before entry, the leading m by n part of the array B must */
/* contain the matrix B. */
/* Unchanged on exit. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. LDB must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* BETA - COMPLEX*16 . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then C need not be set on input. */
/* Unchanged on exit. */
/* C - COMPLEX*16 array of DIMENSION ( LDC, n ). */
/* Before entry, the leading m by n part of the array C must */
/* contain the matrix C, except when beta is zero, in which */
/* case C need not be set on entry. */
/* On exit, the array C is overwritten by the m by n updated */
/* matrix. */
/* LDC - INTEGER. */
/* On entry, LDC specifies the first dimension of C as declared */
/* in the calling (sub) program. LDC must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Set NROWA as the number of rows of A. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
if (lsame_(side, "L")) {
nrowa = *m;
} else {
nrowa = *n;
}
upper = lsame_(uplo, "U");
/* Test the input parameters. */
info = 0;
if (! lsame_(side, "L") && ! lsame_(side, "R")) {
info = 1;
} else if (! upper && ! lsame_(uplo, "L")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*lda < max(1,nrowa)) {
info = 7;
} else if (*ldb < max(1,*m)) {
info = 9;
} else if (*ldc < max(1,*m)) {
info = 12;
}
if (info != 0) {
xerbla_("ZSYMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || alpha->r == 0. && alpha->i == 0. && (beta->r ==
1. && beta->i == 0.)) {
return 0;
}
/* And when alpha.eq.zero. */
if (alpha->r == 0. && alpha->i == 0.) {
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
z__1.i = beta->r * c__[i__4].i + beta->i * c__[
i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (lsame_(side, "L")) {
/* Form C := alpha*A*B + beta*C. */
if (upper) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * b_dim1;
z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
z__1.i = alpha->r * b[i__3].i + alpha->i * b[i__3]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__3 = i__ - 1;
for (k = 1; k <= i__3; ++k) {
i__4 = k + j * c_dim1;
i__5 = k + j * c_dim1;
i__6 = k + i__ * a_dim1;
z__2.r = temp1.r * a[i__6].r - temp1.i * a[i__6].i,
z__2.i = temp1.r * a[i__6].i + temp1.i * a[
i__6].r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
i__4 = k + j * b_dim1;
i__5 = k + i__ * a_dim1;
z__2.r = b[i__4].r * a[i__5].r - b[i__4].i * a[i__5]
.i, z__2.i = b[i__4].r * a[i__5].i + b[i__4]
.i * a[i__5].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L50: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + i__ * a_dim1;
z__2.r = temp1.r * a[i__4].r - temp1.i * a[i__4].i,
z__2.i = temp1.r * a[i__4].i + temp1.i * a[
i__4].r;
z__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
z__3.i = alpha->r * temp2.i + alpha->i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
i__5 = i__ + i__ * a_dim1;
z__4.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__4.i = temp1.r * a[i__5].i + temp1.i * a[
i__5].r;
z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i;
z__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
z__5.i = alpha->r * temp2.i + alpha->i *
temp2.r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L60: */
}
/* L70: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
for (i__ = *m; i__ >= 1; --i__) {
i__2 = i__ + j * b_dim1;
z__1.r = alpha->r * b[i__2].r - alpha->i * b[i__2].i,
z__1.i = alpha->r * b[i__2].i + alpha->i * b[i__2]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
temp2.r = 0., temp2.i = 0.;
i__2 = *m;
for (k = i__ + 1; k <= i__2; ++k) {
i__3 = k + j * c_dim1;
i__4 = k + j * c_dim1;
i__5 = k + i__ * a_dim1;
z__2.r = temp1.r * a[i__5].r - temp1.i * a[i__5].i,
z__2.i = temp1.r * a[i__5].i + temp1.i * a[
i__5].r;
z__1.r = c__[i__4].r + z__2.r, z__1.i = c__[i__4].i +
z__2.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
i__3 = k + j * b_dim1;
i__4 = k + i__ * a_dim1;
z__2.r = b[i__3].r * a[i__4].r - b[i__3].i * a[i__4]
.i, z__2.i = b[i__3].r * a[i__4].i + b[i__3]
.i * a[i__4].r;
z__1.r = temp2.r + z__2.r, z__1.i = temp2.i + z__2.i;
temp2.r = z__1.r, temp2.i = z__1.i;
/* L80: */
}
if (beta->r == 0. && beta->i == 0.) {
i__2 = i__ + j * c_dim1;
i__3 = i__ + i__ * a_dim1;
z__2.r = temp1.r * a[i__3].r - temp1.i * a[i__3].i,
z__2.i = temp1.r * a[i__3].i + temp1.i * a[
i__3].r;
z__3.r = alpha->r * temp2.r - alpha->i * temp2.i,
z__3.i = alpha->r * temp2.i + alpha->i *
temp2.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
} else {
i__2 = i__ + j * c_dim1;
i__3 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__3].r - beta->i * c__[i__3]
.i, z__3.i = beta->r * c__[i__3].i + beta->i *
c__[i__3].r;
i__4 = i__ + i__ * a_dim1;
z__4.r = temp1.r * a[i__4].r - temp1.i * a[i__4].i,
z__4.i = temp1.r * a[i__4].i + temp1.i * a[
i__4].r;
z__2.r = z__3.r + z__4.r, z__2.i = z__3.i + z__4.i;
z__5.r = alpha->r * temp2.r - alpha->i * temp2.i,
z__5.i = alpha->r * temp2.i + alpha->i *
temp2.r;
z__1.r = z__2.r + z__5.r, z__1.i = z__2.i + z__5.i;
c__[i__2].r = z__1.r, c__[i__2].i = z__1.i;
}
/* L90: */
}
/* L100: */
}
}
} else {
/* Form C := alpha*B*A + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j + j * a_dim1;
z__1.r = alpha->r * a[i__2].r - alpha->i * a[i__2].i, z__1.i =
alpha->r * a[i__2].i + alpha->i * a[i__2].r;
temp1.r = z__1.r, temp1.i = z__1.i;
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * b_dim1;
z__1.r = temp1.r * b[i__4].r - temp1.i * b[i__4].i,
z__1.i = temp1.r * b[i__4].i + temp1.i * b[i__4]
.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L110: */
}
} else {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__2.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
z__2.i = beta->r * c__[i__4].i + beta->i * c__[
i__4].r;
i__5 = i__ + j * b_dim1;
z__3.r = temp1.r * b[i__5].r - temp1.i * b[i__5].i,
z__3.i = temp1.r * b[i__5].i + temp1.i * b[i__5]
.r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L120: */
}
}
i__2 = j - 1;
for (k = 1; k <= i__2; ++k) {
if (upper) {
i__3 = k + j * a_dim1;
z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
} else {
i__3 = j + k * a_dim1;
z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + k * b_dim1;
z__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i,
z__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6]
.r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L130: */
}
/* L140: */
}
i__2 = *n;
for (k = j + 1; k <= i__2; ++k) {
if (upper) {
i__3 = j + k * a_dim1;
z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
} else {
i__3 = k + j * a_dim1;
z__1.r = alpha->r * a[i__3].r - alpha->i * a[i__3].i,
z__1.i = alpha->r * a[i__3].i + alpha->i * a[i__3]
.r;
temp1.r = z__1.r, temp1.i = z__1.i;
}
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + k * b_dim1;
z__2.r = temp1.r * b[i__6].r - temp1.i * b[i__6].i,
z__2.i = temp1.r * b[i__6].i + temp1.i * b[i__6]
.r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5].i +
z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L150: */
}
/* L160: */
}
/* L170: */
}
}
return 0;
/* End of ZSYMM . */
} /* zsymm_ */