/* zgemm.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int zgemm_(char *transa, char *transb, integer *m, integer *
n, integer *k, doublecomplex *alpha, doublecomplex *a, integer *lda,
doublecomplex *b, integer *ldb, doublecomplex *beta, doublecomplex *
c__, integer *ldc)
{
/* System generated locals */
integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, i__1, i__2,
i__3, i__4, i__5, i__6;
doublecomplex z__1, z__2, z__3, z__4;
/* Builtin functions */
void d_cnjg(doublecomplex *, doublecomplex *);
/* Local variables */
integer i__, j, l, info;
logical nota, notb;
doublecomplex temp;
logical conja, conjb;
integer ncola;
extern logical lsame_(char *, char *);
integer nrowa, nrowb;
extern /* Subroutine */ int xerbla_(char *, integer *);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* ZGEMM performs one of the matrix-matrix operations */
/* C := alpha*op( A )*op( B ) + beta*C, */
/* where op( X ) is one of */
/* op( X ) = X or op( X ) = X' or op( X ) = conjg( X' ), */
/* alpha and beta are scalars, and A, B and C are matrices, with op( A ) */
/* an m by k matrix, op( B ) a k by n matrix and C an m by n matrix. */
/* Arguments */
/* ========== */
/* TRANSA - CHARACTER*1. */
/* On entry, TRANSA specifies the form of op( A ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSA = 'N' or 'n', op( A ) = A. */
/* TRANSA = 'T' or 't', op( A ) = A'. */
/* TRANSA = 'C' or 'c', op( A ) = conjg( A' ). */
/* Unchanged on exit. */
/* TRANSB - CHARACTER*1. */
/* On entry, TRANSB specifies the form of op( B ) to be used in */
/* the matrix multiplication as follows: */
/* TRANSB = 'N' or 'n', op( B ) = B. */
/* TRANSB = 'T' or 't', op( B ) = B'. */
/* TRANSB = 'C' or 'c', op( B ) = conjg( B' ). */
/* Unchanged on exit. */
/* M - INTEGER. */
/* On entry, M specifies the number of rows of the matrix */
/* op( A ) and of the matrix C. M must be at least zero. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the number of columns of the matrix */
/* op( B ) and the number of columns of the matrix C. N must be */
/* at least zero. */
/* Unchanged on exit. */
/* K - INTEGER. */
/* On entry, K specifies the number of columns of the matrix */
/* op( A ) and the number of rows of the matrix op( B ). K must */
/* be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX*16 . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* A - COMPLEX*16 array of DIMENSION ( LDA, ka ), where ka is */
/* k when TRANSA = 'N' or 'n', and is m otherwise. */
/* Before entry with TRANSA = 'N' or 'n', the leading m by k */
/* part of the array A must contain the matrix A, otherwise */
/* the leading k by m part of the array A must contain the */
/* matrix A. */
/* Unchanged on exit. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. When TRANSA = 'N' or 'n' then */
/* LDA must be at least max( 1, m ), otherwise LDA must be at */
/* least max( 1, k ). */
/* Unchanged on exit. */
/* B - COMPLEX*16 array of DIMENSION ( LDB, kb ), where kb is */
/* n when TRANSB = 'N' or 'n', and is k otherwise. */
/* Before entry with TRANSB = 'N' or 'n', the leading k by n */
/* part of the array B must contain the matrix B, otherwise */
/* the leading n by k part of the array B must contain the */
/* matrix B. */
/* Unchanged on exit. */
/* LDB - INTEGER. */
/* On entry, LDB specifies the first dimension of B as declared */
/* in the calling (sub) program. When TRANSB = 'N' or 'n' then */
/* LDB must be at least max( 1, k ), otherwise LDB must be at */
/* least max( 1, n ). */
/* Unchanged on exit. */
/* BETA - COMPLEX*16 . */
/* On entry, BETA specifies the scalar beta. When BETA is */
/* supplied as zero then C need not be set on input. */
/* Unchanged on exit. */
/* C - COMPLEX*16 array of DIMENSION ( LDC, n ). */
/* Before entry, the leading m by n part of the array C must */
/* contain the matrix C, except when beta is zero, in which */
/* case C need not be set on entry. */
/* On exit, the array C is overwritten by the m by n matrix */
/* ( alpha*op( A )*op( B ) + beta*C ). */
/* LDC - INTEGER. */
/* On entry, LDC specifies the first dimension of C as declared */
/* in the calling (sub) program. LDC must be at least */
/* max( 1, m ). */
/* Unchanged on exit. */
/* Level 3 Blas routine. */
/* -- Written on 8-February-1989. */
/* Jack Dongarra, Argonne National Laboratory. */
/* Iain Duff, AERE Harwell. */
/* Jeremy Du Croz, Numerical Algorithms Group Ltd. */
/* Sven Hammarling, Numerical Algorithms Group Ltd. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. Parameters .. */
/* .. */
/* Set NOTA and NOTB as true if A and B respectively are not */
/* conjugated or transposed, set CONJA and CONJB as true if A and */
/* B respectively are to be transposed but not conjugated and set */
/* NROWA, NCOLA and NROWB as the number of rows and columns of A */
/* and the number of rows of B respectively. */
/* Parameter adjustments */
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
b_dim1 = *ldb;
b_offset = 1 + b_dim1;
b -= b_offset;
c_dim1 = *ldc;
c_offset = 1 + c_dim1;
c__ -= c_offset;
/* Function Body */
nota = lsame_(transa, "N");
notb = lsame_(transb, "N");
conja = lsame_(transa, "C");
conjb = lsame_(transb, "C");
if (nota) {
nrowa = *m;
ncola = *k;
} else {
nrowa = *k;
ncola = *m;
}
if (notb) {
nrowb = *k;
} else {
nrowb = *n;
}
/* Test the input parameters. */
info = 0;
if (! nota && ! conja && ! lsame_(transa, "T")) {
info = 1;
} else if (! notb && ! conjb && ! lsame_(transb, "T")) {
info = 2;
} else if (*m < 0) {
info = 3;
} else if (*n < 0) {
info = 4;
} else if (*k < 0) {
info = 5;
} else if (*lda < max(1,nrowa)) {
info = 8;
} else if (*ldb < max(1,nrowb)) {
info = 10;
} else if (*ldc < max(1,*m)) {
info = 13;
}
if (info != 0) {
xerbla_("ZGEMM ", &info);
return 0;
}
/* Quick return if possible. */
if (*m == 0 || *n == 0 || (alpha->r == 0. && alpha->i == 0. || *k == 0) &&
(beta->r == 1. && beta->i == 0.)) {
return 0;
}
/* And when alpha.eq.zero. */
if (alpha->r == 0. && alpha->i == 0.) {
if (beta->r == 0. && beta->i == 0.) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L10: */
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4].i,
z__1.i = beta->r * c__[i__4].i + beta->i * c__[
i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L30: */
}
/* L40: */
}
}
return 0;
}
/* Start the operations. */
if (notb) {
if (nota) {
/* Form C := alpha*A*B + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L50: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L60: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = l + j * b_dim1;
if (b[i__3].r != 0. || b[i__3].i != 0.) {
i__3 = l + j * b_dim1;
z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
z__1.i = alpha->r * b[i__3].i + alpha->i * b[
i__3].r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[
i__6].r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
.i + z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L70: */
}
}
/* L80: */
}
/* L90: */
}
} else if (conja) {
/* Form C := alpha*conjg( A' )*B + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = l + j * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L100: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L110: */
}
/* L120: */
}
} else {
/* Form C := alpha*A'*B + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = l + j * b_dim1;
z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L130: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L140: */
}
/* L150: */
}
}
} else if (nota) {
if (conjb) {
/* Form C := alpha*A*conjg( B' ) + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L160: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L170: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * b_dim1;
if (b[i__3].r != 0. || b[i__3].i != 0.) {
d_cnjg(&z__2, &b[j + l * b_dim1]);
z__1.r = alpha->r * z__2.r - alpha->i * z__2.i,
z__1.i = alpha->r * z__2.i + alpha->i *
z__2.r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[
i__6].r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
.i + z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L180: */
}
}
/* L190: */
}
/* L200: */
}
} else {
/* Form C := alpha*A*B' + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
if (beta->r == 0. && beta->i == 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
c__[i__3].r = 0., c__[i__3].i = 0.;
/* L210: */
}
} else if (beta->r != 1. || beta->i != 0.) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * c_dim1;
i__4 = i__ + j * c_dim1;
z__1.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__1.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
/* L220: */
}
}
i__2 = *k;
for (l = 1; l <= i__2; ++l) {
i__3 = j + l * b_dim1;
if (b[i__3].r != 0. || b[i__3].i != 0.) {
i__3 = j + l * b_dim1;
z__1.r = alpha->r * b[i__3].r - alpha->i * b[i__3].i,
z__1.i = alpha->r * b[i__3].i + alpha->i * b[
i__3].r;
temp.r = z__1.r, temp.i = z__1.i;
i__3 = *m;
for (i__ = 1; i__ <= i__3; ++i__) {
i__4 = i__ + j * c_dim1;
i__5 = i__ + j * c_dim1;
i__6 = i__ + l * a_dim1;
z__2.r = temp.r * a[i__6].r - temp.i * a[i__6].i,
z__2.i = temp.r * a[i__6].i + temp.i * a[
i__6].r;
z__1.r = c__[i__5].r + z__2.r, z__1.i = c__[i__5]
.i + z__2.i;
c__[i__4].r = z__1.r, c__[i__4].i = z__1.i;
/* L230: */
}
}
/* L240: */
}
/* L250: */
}
}
} else if (conja) {
if (conjb) {
/* Form C := alpha*conjg( A' )*conjg( B' ) + beta*C. */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_cnjg(&z__3, &a[l + i__ * a_dim1]);
d_cnjg(&z__4, &b[j + l * b_dim1]);
z__2.r = z__3.r * z__4.r - z__3.i * z__4.i, z__2.i =
z__3.r * z__4.i + z__3.i * z__4.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L260: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L270: */
}
/* L280: */
}
} else {
/* Form C := alpha*conjg( A' )*B' + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
d_cnjg(&z__3, &a[l + i__ * a_dim1]);
i__4 = j + l * b_dim1;
z__2.r = z__3.r * b[i__4].r - z__3.i * b[i__4].i,
z__2.i = z__3.r * b[i__4].i + z__3.i * b[i__4]
.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L290: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L300: */
}
/* L310: */
}
}
} else {
if (conjb) {
/* Form C := alpha*A'*conjg( B' ) + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
d_cnjg(&z__3, &b[j + l * b_dim1]);
z__2.r = a[i__4].r * z__3.r - a[i__4].i * z__3.i,
z__2.i = a[i__4].r * z__3.i + a[i__4].i *
z__3.r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L320: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L330: */
}
/* L340: */
}
} else {
/* Form C := alpha*A'*B' + beta*C */
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = *m;
for (i__ = 1; i__ <= i__2; ++i__) {
temp.r = 0., temp.i = 0.;
i__3 = *k;
for (l = 1; l <= i__3; ++l) {
i__4 = l + i__ * a_dim1;
i__5 = j + l * b_dim1;
z__2.r = a[i__4].r * b[i__5].r - a[i__4].i * b[i__5]
.i, z__2.i = a[i__4].r * b[i__5].i + a[i__4]
.i * b[i__5].r;
z__1.r = temp.r + z__2.r, z__1.i = temp.i + z__2.i;
temp.r = z__1.r, temp.i = z__1.i;
/* L350: */
}
if (beta->r == 0. && beta->i == 0.) {
i__3 = i__ + j * c_dim1;
z__1.r = alpha->r * temp.r - alpha->i * temp.i,
z__1.i = alpha->r * temp.i + alpha->i *
temp.r;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
} else {
i__3 = i__ + j * c_dim1;
z__2.r = alpha->r * temp.r - alpha->i * temp.i,
z__2.i = alpha->r * temp.i + alpha->i *
temp.r;
i__4 = i__ + j * c_dim1;
z__3.r = beta->r * c__[i__4].r - beta->i * c__[i__4]
.i, z__3.i = beta->r * c__[i__4].i + beta->i *
c__[i__4].r;
z__1.r = z__2.r + z__3.r, z__1.i = z__2.i + z__3.i;
c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
}
/* L360: */
}
/* L370: */
}
}
}
return 0;
/* End of ZGEMM . */
} /* zgemm_ */