/* cher2.f -- translated by f2c (version 20061008).
You must link the resulting object file with libf2c:
on Microsoft Windows system, link with libf2c.lib;
on Linux or Unix systems, link with .../path/to/libf2c.a -lm
or, if you install libf2c.a in a standard place, with -lf2c -lm
-- in that order, at the end of the command line, as in
cc *.o -lf2c -lm
Source for libf2c is in /netlib/f2c/libf2c.zip, e.g.,
http://www.netlib.org/f2c/libf2c.zip
*/
#include "f2c.h"
#include "blaswrap.h"
/* Subroutine */ int cher2_(char *uplo, integer *n, complex *alpha, complex *
x, integer *incx, complex *y, integer *incy, complex *a, integer *lda)
{
/* System generated locals */
integer a_dim1, a_offset, i__1, i__2, i__3, i__4, i__5, i__6;
real r__1;
complex q__1, q__2, q__3, q__4;
/* Builtin functions */
void r_cnjg(complex *, complex *);
/* Local variables */
integer i__, j, ix, iy, jx, jy, kx, ky, info;
complex temp1, temp2;
extern logical lsame_(char *, char *);
extern /* Subroutine */ int xerbla_(char *, integer *);
/* .. Scalar Arguments .. */
/* .. */
/* .. Array Arguments .. */
/* .. */
/* Purpose */
/* ======= */
/* CHER2 performs the hermitian rank 2 operation */
/* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A, */
/* where alpha is a scalar, x and y are n element vectors and A is an n */
/* by n hermitian matrix. */
/* Arguments */
/* ========== */
/* UPLO - CHARACTER*1. */
/* On entry, UPLO specifies whether the upper or lower */
/* triangular part of the array A is to be referenced as */
/* follows: */
/* UPLO = 'U' or 'u' Only the upper triangular part of A */
/* is to be referenced. */
/* UPLO = 'L' or 'l' Only the lower triangular part of A */
/* is to be referenced. */
/* Unchanged on exit. */
/* N - INTEGER. */
/* On entry, N specifies the order of the matrix A. */
/* N must be at least zero. */
/* Unchanged on exit. */
/* ALPHA - COMPLEX . */
/* On entry, ALPHA specifies the scalar alpha. */
/* Unchanged on exit. */
/* X - COMPLEX array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCX ) ). */
/* Before entry, the incremented array X must contain the n */
/* element vector x. */
/* Unchanged on exit. */
/* INCX - INTEGER. */
/* On entry, INCX specifies the increment for the elements of */
/* X. INCX must not be zero. */
/* Unchanged on exit. */
/* Y - COMPLEX array of dimension at least */
/* ( 1 + ( n - 1 )*abs( INCY ) ). */
/* Before entry, the incremented array Y must contain the n */
/* element vector y. */
/* Unchanged on exit. */
/* INCY - INTEGER. */
/* On entry, INCY specifies the increment for the elements of */
/* Y. INCY must not be zero. */
/* Unchanged on exit. */
/* A - COMPLEX array of DIMENSION ( LDA, n ). */
/* Before entry with UPLO = 'U' or 'u', the leading n by n */
/* upper triangular part of the array A must contain the upper */
/* triangular part of the hermitian matrix and the strictly */
/* lower triangular part of A is not referenced. On exit, the */
/* upper triangular part of the array A is overwritten by the */
/* upper triangular part of the updated matrix. */
/* Before entry with UPLO = 'L' or 'l', the leading n by n */
/* lower triangular part of the array A must contain the lower */
/* triangular part of the hermitian matrix and the strictly */
/* upper triangular part of A is not referenced. On exit, the */
/* lower triangular part of the array A is overwritten by the */
/* lower triangular part of the updated matrix. */
/* Note that the imaginary parts of the diagonal elements need */
/* not be set, they are assumed to be zero, and on exit they */
/* are set to zero. */
/* LDA - INTEGER. */
/* On entry, LDA specifies the first dimension of A as declared */
/* in the calling (sub) program. LDA must be at least */
/* max( 1, n ). */
/* Unchanged on exit. */
/* Level 2 Blas routine. */
/* -- Written on 22-October-1986. */
/* Jack Dongarra, Argonne National Lab. */
/* Jeremy Du Croz, Nag Central Office. */
/* Sven Hammarling, Nag Central Office. */
/* Richard Hanson, Sandia National Labs. */
/* .. Parameters .. */
/* .. */
/* .. Local Scalars .. */
/* .. */
/* .. External Functions .. */
/* .. */
/* .. External Subroutines .. */
/* .. */
/* .. Intrinsic Functions .. */
/* .. */
/* Test the input parameters. */
/* Parameter adjustments */
--x;
--y;
a_dim1 = *lda;
a_offset = 1 + a_dim1;
a -= a_offset;
/* Function Body */
info = 0;
if (! lsame_(uplo, "U") && ! lsame_(uplo, "L")) {
info = 1;
} else if (*n < 0) {
info = 2;
} else if (*incx == 0) {
info = 5;
} else if (*incy == 0) {
info = 7;
} else if (*lda < max(1,*n)) {
info = 9;
}
if (info != 0) {
xerbla_("CHER2 ", &info);
return 0;
}
/* Quick return if possible. */
if (*n == 0 || alpha->r == 0.f && alpha->i == 0.f) {
return 0;
}
/* Set up the start points in X and Y if the increments are not both */
/* unity. */
if (*incx != 1 || *incy != 1) {
if (*incx > 0) {
kx = 1;
} else {
kx = 1 - (*n - 1) * *incx;
}
if (*incy > 0) {
ky = 1;
} else {
ky = 1 - (*n - 1) * *incy;
}
jx = kx;
jy = ky;
}
/* Start the operations. In this version the elements of A are */
/* accessed sequentially with one pass through the triangular part */
/* of A. */
if (lsame_(uplo, "U")) {
/* Form A when A is stored in the upper triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
i__3 = j;
if (x[i__2].r != 0.f || x[i__2].i != 0.f || (y[i__3].r != 0.f
|| y[i__3].i != 0.f)) {
r_cnjg(&q__2, &y[j]);
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp1.r = q__1.r, temp1.i = q__1.i;
i__2 = j;
q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
r_cnjg(&q__1, &q__2);
temp2.r = q__1.r, temp2.i = q__1.i;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = i__ + j * a_dim1;
i__5 = i__;
q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
q__3.i = x[i__5].r * temp1.i + x[i__5].i *
temp1.r;
q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
q__3.i;
i__6 = i__;
q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
q__4.i = y[i__6].r * temp2.i + y[i__6].i *
temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L10: */
}
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
i__4 = j;
q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
q__2.i = x[i__4].r * temp1.i + x[i__4].i *
temp1.r;
i__5 = j;
q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
q__3.i = y[i__5].r * temp2.i + y[i__5].i *
temp2.r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
r__1 = a[i__3].r + q__1.r;
a[i__2].r = r__1, a[i__2].i = 0.f;
} else {
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
}
/* L20: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
i__3 = jy;
if (x[i__2].r != 0.f || x[i__2].i != 0.f || (y[i__3].r != 0.f
|| y[i__3].i != 0.f)) {
r_cnjg(&q__2, &y[jy]);
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp1.r = q__1.r, temp1.i = q__1.i;
i__2 = jx;
q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
r_cnjg(&q__1, &q__2);
temp2.r = q__1.r, temp2.i = q__1.i;
ix = kx;
iy = ky;
i__2 = j - 1;
for (i__ = 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = i__ + j * a_dim1;
i__5 = ix;
q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
q__3.i = x[i__5].r * temp1.i + x[i__5].i *
temp1.r;
q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
q__3.i;
i__6 = iy;
q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
q__4.i = y[i__6].r * temp2.i + y[i__6].i *
temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
ix += *incx;
iy += *incy;
/* L30: */
}
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
i__4 = jx;
q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
q__2.i = x[i__4].r * temp1.i + x[i__4].i *
temp1.r;
i__5 = jy;
q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
q__3.i = y[i__5].r * temp2.i + y[i__5].i *
temp2.r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
r__1 = a[i__3].r + q__1.r;
a[i__2].r = r__1, a[i__2].i = 0.f;
} else {
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
}
jx += *incx;
jy += *incy;
/* L40: */
}
}
} else {
/* Form A when A is stored in the lower triangle. */
if (*incx == 1 && *incy == 1) {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = j;
i__3 = j;
if (x[i__2].r != 0.f || x[i__2].i != 0.f || (y[i__3].r != 0.f
|| y[i__3].i != 0.f)) {
r_cnjg(&q__2, &y[j]);
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp1.r = q__1.r, temp1.i = q__1.i;
i__2 = j;
q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
r_cnjg(&q__1, &q__2);
temp2.r = q__1.r, temp2.i = q__1.i;
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
i__4 = j;
q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
q__2.i = x[i__4].r * temp1.i + x[i__4].i *
temp1.r;
i__5 = j;
q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
q__3.i = y[i__5].r * temp2.i + y[i__5].i *
temp2.r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
r__1 = a[i__3].r + q__1.r;
a[i__2].r = r__1, a[i__2].i = 0.f;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
i__3 = i__ + j * a_dim1;
i__4 = i__ + j * a_dim1;
i__5 = i__;
q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
q__3.i = x[i__5].r * temp1.i + x[i__5].i *
temp1.r;
q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
q__3.i;
i__6 = i__;
q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
q__4.i = y[i__6].r * temp2.i + y[i__6].i *
temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L50: */
}
} else {
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
}
/* L60: */
}
} else {
i__1 = *n;
for (j = 1; j <= i__1; ++j) {
i__2 = jx;
i__3 = jy;
if (x[i__2].r != 0.f || x[i__2].i != 0.f || (y[i__3].r != 0.f
|| y[i__3].i != 0.f)) {
r_cnjg(&q__2, &y[jy]);
q__1.r = alpha->r * q__2.r - alpha->i * q__2.i, q__1.i =
alpha->r * q__2.i + alpha->i * q__2.r;
temp1.r = q__1.r, temp1.i = q__1.i;
i__2 = jx;
q__2.r = alpha->r * x[i__2].r - alpha->i * x[i__2].i,
q__2.i = alpha->r * x[i__2].i + alpha->i * x[i__2]
.r;
r_cnjg(&q__1, &q__2);
temp2.r = q__1.r, temp2.i = q__1.i;
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
i__4 = jx;
q__2.r = x[i__4].r * temp1.r - x[i__4].i * temp1.i,
q__2.i = x[i__4].r * temp1.i + x[i__4].i *
temp1.r;
i__5 = jy;
q__3.r = y[i__5].r * temp2.r - y[i__5].i * temp2.i,
q__3.i = y[i__5].r * temp2.i + y[i__5].i *
temp2.r;
q__1.r = q__2.r + q__3.r, q__1.i = q__2.i + q__3.i;
r__1 = a[i__3].r + q__1.r;
a[i__2].r = r__1, a[i__2].i = 0.f;
ix = jx;
iy = jy;
i__2 = *n;
for (i__ = j + 1; i__ <= i__2; ++i__) {
ix += *incx;
iy += *incy;
i__3 = i__ + j * a_dim1;
i__4 = i__ + j * a_dim1;
i__5 = ix;
q__3.r = x[i__5].r * temp1.r - x[i__5].i * temp1.i,
q__3.i = x[i__5].r * temp1.i + x[i__5].i *
temp1.r;
q__2.r = a[i__4].r + q__3.r, q__2.i = a[i__4].i +
q__3.i;
i__6 = iy;
q__4.r = y[i__6].r * temp2.r - y[i__6].i * temp2.i,
q__4.i = y[i__6].r * temp2.i + y[i__6].i *
temp2.r;
q__1.r = q__2.r + q__4.r, q__1.i = q__2.i + q__4.i;
a[i__3].r = q__1.r, a[i__3].i = q__1.i;
/* L70: */
}
} else {
i__2 = j + j * a_dim1;
i__3 = j + j * a_dim1;
r__1 = a[i__3].r;
a[i__2].r = r__1, a[i__2].i = 0.f;
}
jx += *incx;
jy += *incy;
/* L80: */
}
}
}
return 0;
/* End of CHER2 . */
} /* cher2_ */