aboutsummaryrefslogtreecommitdiffstats
path: root/lib/src/fft/pffft
diff options
context:
space:
mode:
authorDaniil Cherednik <dan.cherednik@gmail.com>2023-12-12 23:17:35 +0100
committerDaniil Cherednik <dan.cherednik@gmail.com>2023-12-12 23:17:35 +0100
commit0f08bc5487adffde5f3e0aff30ffe41b53a21bf1 (patch)
treedce92f6daa256f17d8e292e1578605af2f2218f9 /lib/src/fft/pffft
parent93a9691246574b6d51ddbbdb5be3dceb89ff24e9 (diff)
downloadlibfshift-0f08bc5487adffde5f3e0aff30ffe41b53a21bf1.tar.gz
Draft implementation:HEADmain
- f must be divisors of 44100 and be positive - 44100 hardcoded
Diffstat (limited to 'lib/src/fft/pffft')
-rw-r--r--lib/src/fft/pffft/README.md320
-rw-r--r--lib/src/fft/pffft/pffft.c1884
-rw-r--r--lib/src/fft/pffft/pffft.h177
3 files changed, 2381 insertions, 0 deletions
diff --git a/lib/src/fft/pffft/README.md b/lib/src/fft/pffft/README.md
new file mode 100644
index 0000000..5f741aa
--- /dev/null
+++ b/lib/src/fft/pffft/README.md
@@ -0,0 +1,320 @@
+PFFFT: a pretty fast FFT.
+
+## TL;DR
+
+PFFFT does 1D Fast Fourier Transforms, of single precision real and
+complex vectors. It tries do it fast, it tries to be correct, and it
+tries to be small. Computations do take advantage of SSE1 instructions
+on x86 cpus, Altivec on powerpc cpus, and NEON on ARM cpus. The
+license is BSD-like.
+
+
+## Why does it exist:
+
+I was in search of a good performing FFT library , preferably very
+small and with a very liberal license.
+
+When one says "fft library", FFTW ("Fastest Fourier Transform in the
+West") is probably the first name that comes to mind -- I guess that
+99% of open-source projects that need a FFT do use FFTW, and are happy
+with it. However, it is quite a large library , which does everything
+fft related (2d transforms, 3d transforms, other transformations such
+as discrete cosine , or fast hartley). And it is licensed under the
+GNU GPL , which means that it cannot be used in non open-source
+products.
+
+An alternative to FFTW that is really small, is the venerable FFTPACK
+v4, which is available on NETLIB. A more recent version (v5) exists,
+but it is larger as it deals with multi-dimensional transforms. This
+is a library that is written in FORTRAN 77, a language that is now
+considered as a bit antiquated by many. FFTPACKv4 was written in 1985,
+by Dr Paul Swarztrauber of NCAR, more than 25 years ago ! And despite
+its age, benchmarks show it that it still a very good performing FFT
+library, see for example the 1d single precision benchmarks here:
+http://www.fftw.org/speed/opteron-2.2GHz-32bit/ . It is however not
+competitive with the fastest ones, such as FFTW, Intel MKL, AMD ACML,
+Apple vDSP. The reason for that is that those libraries do take
+advantage of the SSE SIMD instructions available on Intel CPUs,
+available since the days of the Pentium III. These instructions deal
+with small vectors of 4 floats at a time, instead of a single float
+for a traditionnal FPU, so when using these instructions one may expect
+a 4-fold performance improvement.
+
+The idea was to take this fortran fftpack v4 code, translate to C,
+modify it to deal with those SSE instructions, and check that the
+final performance is not completely ridiculous when compared to other
+SIMD FFT libraries. Translation to C was performed with f2c (
+http://www.netlib.org/f2c/ ). The resulting file was a bit edited in
+order to remove the thousands of gotos that were introduced by
+f2c. You will find the fftpack.h and fftpack.c sources in the
+repository, this a complete translation of
+http://www.netlib.org/fftpack/ , with the discrete cosine transform
+and the test program. There is no license information in the netlib
+repository, but it was confirmed to me by the fftpack v5 curators that
+the same terms do apply to fftpack v4:
+http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html . This is a
+"BSD-like" license, it is compatible with proprietary projects.
+
+Adapting fftpack to deal with the SIMD 4-element vectors instead of
+scalar single precision numbers was more complex than I originally
+thought, especially with the real transforms, and I ended up writing
+more code than I planned..
+
+
+## The code:
+
+Only two files, in good old C, pffft.c and pffft.h . The API is very
+very simple, just make sure that you read the comments in pffft.h.
+
+
+## Comparison with other FFTs:
+
+The idea was not to break speed records, but to get a decently fast
+fft that is at least 50% as fast as the fastest FFT -- especially on
+slowest computers . I'm more focused on getting the best performance
+on slow cpus (Atom, Intel Core 1, old Athlons, ARM Cortex-A9...), than
+on getting top performance on today fastest cpus.
+
+It can be used in a real-time context as the fft functions do not
+perform any memory allocation -- that is why they accept a 'work'
+array in their arguments.
+
+It is also a bit focused on performing 1D convolutions, that is why it
+provides "unordered" FFTs , and a fourier domain convolution
+operation.
+
+
+Benchmark results
+--
+
+The benchmark shows the performance of various fft implementations measured in
+MFlops, with the number of floating point operations being defined as 5Nlog2(N)
+for a length N complex fft, and 2.5*Nlog2(N) for a real fft.
+See http://www.fftw.org/speed/method.html for an explanation of these formulas.
+
+2021 update: I'm now including Intel MKL, and I'm removing old benchmarks results for cpu that have
+not been relevant for a very long time.. Now that most Intel cpus have AVX enabled (most but not
+all, Intel is still selling cpus with no AVX), the performance of pffft vs MKL or VDSP is a bit
+behind since pffft is only SSE2.
+
+However, performance of pffft on the Apple M1 cpu is very good (especially for the real fft), so I'll put it first :-)
+
+
+MacOS Big Sur, XCode 12, M1 cpu on a 2020 mac mini. I'm not including fftw results as they are very
+bad here, most likely Homebrew did not enable neon when building the lib.
+
+ clang -o test_pffft -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -framework Accelerate
+
+| input len |real FFTPack| real vDSP | real PFFFT |cplx FFTPack| cplx vDSP | cplx PFFFT |
+|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 4835 | 15687 | 23704 | 12935 | 36222 | 33046 |
+| 96 | 9539 | n/a | 25957 | 11068 | n/a | 32703 |
+| 128 | 11119 | 33087 | 30143 | 12329 | 50866 | 36363 |
+| 160 | 11062 | n/a | 32938 | 11641 | n/a | 34945 |
+| 192 | 11784 | n/a | 35726 | 12945 | n/a | 39258 |
+| 256 | 13370 | 44880 | 40683 | 14214 | 64654 | 42522 |
+| 384 | 11059 | n/a | 40038 | 11655 | n/a | 39565 |
+| 480 | 10977 | n/a | 40895 | 10802 | n/a | 36943 |
+| 512 | 12197 | 34830 | 43353 | 12357 | 78441 | 41450 |
+| 640 | 11685 | n/a | 43393 | 11775 | n/a | 39302 |
+| 768 | 12314 | n/a | 45836 | 12756 | n/a | 43058 |
+| 800 | 11213 | n/a | 41321 | 10842 | n/a | 37382 |
+| 1024 | 13354 | 45214 | 50039 | 13759 | 93269 | 45210 |
+| 2048 | 12806 | 57047 | 49519 | 12908 | 99361 | 43719 |
+| 2400 | 10972 | n/a | 43399 | 10928 | n/a | 37574 |
+| 4096 | 13957 | 65233 | 52845 | 13851 | 105734 | 46274 |
+| 8192 | 12772 | 70108 | 49830 | 12560 | 85238 | 40252 |
+| 9216 | 12281 | n/a | 48929 | 12114 | n/a | 39202 |
+| 16384 | 13363 | 62150 | 48260 | 12910 | 79073 | 38742 |
+| 32768 | 11622 | 60809 | 32801 | 11145 | 71570 | 35607 |
+| 262144 | 11525 | 53651 | 34988 | 10818 | 63198 | 36742 |
+| 1048576 | 11167 | 46119 | 34437 | 9202 | 38823 | 31788 |
+
+So yes, the perf of the M1 cpu on the complex is really impressive...
+
+Windows 10, Ryzen 7 4800HS @ 2.9GHz, Visual c++ 2019 and Intel MKL 2018
+
+Build with:
+
+ cl /Ox -D_USE_MATH_DEFINES -DHAVE_MKL /arch:SSE test_pffft.c pffft.c fftpack.c /I c:/MKL/include c:/MKL/lib/intel64/mkl_intel_lp64.lib c:/MKL/lib/intel64/mkl_sequential.lib c:/MKL/lib/intel64/mkl_core.lib
+
+| input len |real FFTPack| real MKL | real PFFFT |cplx FFTPack| cplx MKL | cplx PFFFT |
+|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 3938 | 7877 | 14629 | 7314 | 25600 | 19200 |
+| 96 | 5108 | 14984 | 13761 | 7329 | 20128 | 20748 |
+| 128 | 5973 | 18379 | 19911 | 7626 | 29257 | 23123 |
+| 160 | 6694 | 18287 | 19731 | 7976 | 22720 | 21120 |
+| 192 | 6472 | 16525 | 20439 | 6813 | 27252 | 25054 |
+| 256 | 7585 | 23406 | 25600 | 8715 | 33437 | 26006 |
+| 384 | 6279 | 21441 | 23759 | 7206 | 25855 | 25481 |
+| 480 | 6514 | 20267 | 22800 | 7238 | 26435 | 21976 |
+| 512 | 6776 | 26332 | 29729 | 6312 | 34777 | 25961 |
+| 640 | 7019 | 21695 | 27273 | 7232 | 26889 | 25120 |
+| 768 | 6815 | 21809 | 28865 | 7667 | 31658 | 27645 |
+| 800 | 7261 | 23513 | 25988 | 6764 | 27056 | 25001 |
+| 1024 | 7529 | 30118 | 31030 | 8127 | 38641 | 28055 |
+| 2048 | 7411 | 31289 | 33129 | 8533 | 38841 | 27812 |
+| 2400 | 7768 | 22993 | 26128 | 7563 | 26429 | 24992 |
+| 4096 | 8533 | 33211 | 34134 | 8777 | 38400 | 27007 |
+| 8192 | 6525 | 32468 | 30254 | 7924 | 39737 | 28025 |
+| 9216 | 7322 | 22835 | 28068 | 7322 | 29939 | 26945 |
+| 16384 | 7455 | 31807 | 30453 | 8132 | 37177 | 27525 |
+| 32768 | 8157 | 31949 | 30671 | 8334 | 29210 | 26214 |
+| 262144 | 7349 | 25255 | 24904 | 6844 | 22413 | 16996 |
+| 1048576 | 5115 | 19284 | 8347 | 6079 | 12906 | 9244 |
+
+(Note: MKL is not using AVX on AMD cpus)
+
+
+MacOS Catalina, Xcode 12, fftw 3.3.9 and MKL 2020.1, cpu is "i7-6920HQ CPU @ 2.90GHz"
+
+Built with:
+
+ clang -o test_pffft -DHAVE_MKL -I /opt/intel/mkl/include -DHAVE_FFTW -DHAVE_VECLIB -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -framework Accelerate /opt/intel/mkl/lib/libmkl_{intel_lp64,sequential,core}.
+
+| input len |real FFTPack| real vDSP | real MKL | real FFTW | real PFFFT |cplx FFTPack| cplx vDSP | cplx MKL | cplx FFTW | cplx PFFFT |
+|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
+| 64 | 4528 | 12550 | 18214 | 8237 | 10097 | 5962 | 25748 | 40865 | 32233 | 15807 |
+| 96 | 4738 | n/a | 15844 | 10749 | 11026 | 5344 | n/a | 21086 | 34678 | 15493 |
+| 128 | 5464 | 20419 | 25739 | 12371 | 13338 | 6060 | 28659 | 42419 | 38868 | 17694 |
+| 160 | 5517 | n/a | 18644 | 12361 | 13765 | 6002 | n/a | 21633 | 37726 | 17969 |
+| 192 | 5904 | n/a | 18861 | 12480 | 15134 | 6271 | n/a | 26074 | 33216 | 18525 |
+| 256 | 6618 | 24944 | 26063 | 14646 | 16895 | 6965 | 34332 | 52182 | 44496 | 20980 |
+| 384 | 5685 | n/a | 22307 | 14682 | 16969 | 5853 | n/a | 27363 | 35805 | 19841 |
+| 480 | 5757 | n/a | 21122 | 14572 | 16765 | 5836 | n/a | 26259 | 26340 | 18852 |
+| 512 | 6245 | 28100 | 27224 | 16546 | 18502 | 6240 | 37098 | 51679 | 43444 | 21519 |
+| 640 | 6110 | n/a | 22565 | 14691 | 18573 | 6376 | n/a | 29219 | 34327 | 20708 |
+| 768 | 6424 | n/a | 21496 | 15999 | 19900 | 6358 | n/a | 30168 | 36437 | 21657 |
+| 800 | 5747 | n/a | 24857 | 15068 | 18842 | 5698 | n/a | 26891 | 20249 | 18497 |
+| 1024 | 6397 | 28477 | 27520 | 13399 | 18491 | 5558 | 33632 | 44366 | 35960 | 23421 |
+| 2048 | 6563 | 37379 | 34743 | 14204 | 20854 | 5828 | 41758 | 40301 | 36469 | 18504 |
+| 2400 | 5594 | n/a | 24631 | 15496 | 16732 | 4128 | n/a | 16997 | 23421 | 16710 |
+| 4096 | 6262 | 36417 | 28150 | 17742 | 19356 | 6272 | 33534 | 31632 | 33524 | 16995 |
+| 8192 | 4142 | 24923 | 26571 | 17102 | 10104 | 5681 | 29504 | 33221 | 21803 | 15212 |
+| 9216 | 5762 | n/a | 17305 | 14870 | 14464 | 5781 | n/a | 21579 | 22174 | 17358 |
+| 16384 | 5650 | 29395 | 27201 | 15857 | 11748 | 5932 | 26534 | 31708 | 21161 | 16173 |
+| 32768 | 5441 | 23931 | 26261 | 15394 | 10334 | 5679 | 23278 | 31162 | 19966 | 14624 |
+| 262144 | 4946 | 19081 | 23591 | 9612 | 9544 | 4958 | 16362 | 20196 | 10419 | 12575 |
+| 1048576 | 3752 | 14873 | 15469 | 6673 | 6653 | 4048 | 9563 | 16681 | 4298 | 7852 |
+
+
+MacOS Lion, gcc 4.2, 64-bit, fftw 3.3 on a 3.4 GHz core i7 2600
+
+Built with:
+
+ gcc-4.2 -o test_pffft -arch x86_64 -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -DHAVE_VECLIB -framework veclib -DHAVE_FFTW -lfftw3f
+
+| input len |real FFTPack| real vDSP | real FFTW | real PFFFT |cplx FFTPack| cplx vDSP | cplx FFTW | cplx PFFFT |
+|----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 2816 | 8596 | 7329 | 8187 | 2887 | 14898 | 14668 | 11108 |
+| 96 | 3298 | n/a | 8378 | 7727 | 3953 | n/a | 15680 | 10878 |
+| 128 | 3507 | 11575 | 9266 | 10108 | 4233 | 17598 | 16427 | 12000 |
+| 160 | 3391 | n/a | 9838 | 10711 | 4220 | n/a | 16653 | 11187 |
+| 192 | 3919 | n/a | 9868 | 10956 | 4297 | n/a | 15770 | 12540 |
+| 256 | 4283 | 13179 | 10694 | 13128 | 4545 | 19550 | 16350 | 13822 |
+| 384 | 3136 | n/a | 10810 | 12061 | 3600 | n/a | 16103 | 13240 |
+| 480 | 3477 | n/a | 10632 | 12074 | 3536 | n/a | 11630 | 12522 |
+| 512 | 3783 | 15141 | 11267 | 13838 | 3649 | 20002 | 16560 | 13580 |
+| 640 | 3639 | n/a | 11164 | 13946 | 3695 | n/a | 15416 | 13890 |
+| 768 | 3800 | n/a | 11245 | 13495 | 3590 | n/a | 15802 | 14552 |
+| 800 | 3440 | n/a | 10499 | 13301 | 3659 | n/a | 12056 | 13268 |
+| 1024 | 3924 | 15605 | 11450 | 15339 | 3769 | 20963 | 13941 | 15467 |
+| 2048 | 4518 | 16195 | 11551 | 15532 | 4258 | 20413 | 13723 | 15042 |
+| 2400 | 4294 | n/a | 10685 | 13078 | 4093 | n/a | 12777 | 13119 |
+| 4096 | 4750 | 16596 | 11672 | 15817 | 4157 | 19662 | 14316 | 14336 |
+| 8192 | 3820 | 16227 | 11084 | 12555 | 3691 | 18132 | 12102 | 13813 |
+| 9216 | 3864 | n/a | 10254 | 12870 | 3586 | n/a | 12119 | 13994 |
+| 16384 | 3822 | 15123 | 10454 | 12822 | 3613 | 16874 | 12370 | 13881 |
+| 32768 | 4175 | 14512 | 10662 | 11095 | 3881 | 14702 | 11619 | 11524 |
+| 262144 | 3317 | 11429 | 6269 | 9517 | 2810 | 11729 | 7757 | 10179 |
+| 1048576 | 2913 | 10551 | 4730 | 5867 | 2661 | 7881 | 3520 | 5350 |
+
+
+Ubuntu 11.04, gcc 4.5, 32-bit, fftw 3.2 on a 2.66 core 2 quad
+
+Built with:
+
+ gcc -o test_pffft -DHAVE_FFTW -msse -mfpmath=sse -O3 -Wall -W pffft.c test_pffft.c fftpack.c -L/usr/local/lib -I/usr/local/include/ -lfftw3f -lm
+
+| input len |real FFTPack| real FFTW | real PFFFT |cplx FFTPack| cplx FFTW | cplx PFFFT |
+|----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 1920 | 3614 | 5120 | 2194 | 7680 | 6467 |
+| 96 | 1873 | 3549 | 5187 | 2107 | 8429 | 5863 |
+| 128 | 2240 | 3773 | 5514 | 2560 | 7964 | 6827 |
+| 192 | 1765 | 4569 | 7767 | 2284 | 9137 | 7061 |
+| 256 | 2048 | 5461 | 7447 | 2731 | 9638 | 7802 |
+| 384 | 1998 | 5861 | 6762 | 2313 | 9253 | 7644 |
+| 512 | 2095 | 6144 | 7680 | 2194 | 10240 | 7089 |
+| 768 | 2230 | 5773 | 7549 | 2045 | 10331 | 7010 |
+| 1024 | 2133 | 6400 | 8533 | 2133 | 10779 | 7877 |
+| 2048 | 2011 | 7040 | 8665 | 1942 | 10240 | 7768 |
+| 4096 | 2194 | 6827 | 8777 | 1755 | 9452 | 6827 |
+| 8192 | 1849 | 6656 | 6656 | 1752 | 7831 | 6827 |
+| 9216 | 1871 | 5858 | 6416 | 1643 | 6909 | 6266 |
+| 16384 | 1883 | 6223 | 6506 | 1664 | 7340 | 6982 |
+| 32768 | 1826 | 6390 | 6667 | 1631 | 7481 | 6971 |
+| 262144 | 1546 | 4075 | 5977 | 1299 | 3415 | 3551 |
+| 1048576 | 1104 | 2071 | 1730 | 1104 | 1149 | 1834 |
+
+
+NVIDIA Jetson TK1 board, gcc-4.8.2. The cpu is a 2.3GHz cortex A15 (Tegra K1).
+
+Built with:
+
+ gcc -O3 -march=armv7-a -mtune=native -mfloat-abi=hard -mfpu=neon -ffast-math test_pffft.c pffft.c -o test_pffft_arm fftpack.c -lm
+
+| input len |real FFTPack| real PFFFT |cplx FFTPack| cplx PFFFT |
+|----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 1735 | 3308 | 1994 | 3744 |
+| 96 | 1596 | 3448 | 1987 | 3572 |
+| 128 | 1807 | 4076 | 2255 | 3960 |
+| 160 | 1769 | 4083 | 2071 | 3845 |
+| 192 | 1990 | 4233 | 2017 | 3939 |
+| 256 | 2191 | 4882 | 2254 | 4346 |
+| 384 | 1878 | 4492 | 2073 | 4012 |
+| 480 | 1748 | 4398 | 1923 | 3951 |
+| 512 | 2030 | 5064 | 2267 | 4195 |
+| 640 | 1918 | 4756 | 2094 | 4184 |
+| 768 | 2099 | 4907 | 2048 | 4297 |
+| 800 | 1822 | 4555 | 1880 | 4063 |
+| 1024 | 2232 | 5355 | 2187 | 4420 |
+| 2048 | 2176 | 4983 | 2027 | 3602 |
+| 2400 | 1741 | 4256 | 1710 | 3344 |
+| 4096 | 1816 | 3914 | 1851 | 3349 |
+| 8192 | 1716 | 3481 | 1700 | 3255 |
+| 9216 | 1735 | 3589 | 1653 | 3094 |
+| 16384 | 1567 | 3483 | 1637 | 3244 |
+| 32768 | 1624 | 3240 | 1655 | 3156 |
+| 262144 | 1012 | 1898 | 983 | 1503 |
+| 1048576 | 876 | 1154 | 868 | 1341 |
+
+
+iPad Air 2 with iOS9, xcode 8.0, arm64. The cpu is an Apple A8X, supposedly running at 1.5GHz.
+
+| input len |real FFTPack| real vDSP | real PFFFT |cplx FFTPack| cplx vDSP | cplx PFFFT |
+|----------:|-----------:|-----------:|-----------:|-----------:|-----------:|-----------:|
+| 64 | 2517 | 7995 | 6086 | 2725 | 13006 | 8495 |
+| 96 | 2442 | n/a | 6691 | 2256 | n/a | 7991 |
+| 128 | 2664 | 10186 | 7877 | 2575 | 15115 | 9115 |
+| 160 | 2638 | n/a | 8283 | 2682 | n/a | 8806 |
+| 192 | 2903 | n/a | 9083 | 2634 | n/a | 8980 |
+| 256 | 3184 | 11452 | 10039 | 3026 | 15410 | 10199 |
+| 384 | 2665 | n/a | 10100 | 2275 | n/a | 9247 |
+| 480 | 2546 | n/a | 9863 | 2341 | n/a | 8892 |
+| 512 | 2832 | 12197 | 10989 | 2547 | 16768 | 10154 |
+| 640 | 2755 | n/a | 10461 | 2569 | n/a | 9666 |
+| 768 | 2998 | n/a | 11355 | 2585 | n/a | 9813 |
+| 800 | 2516 | n/a | 10332 | 2433 | n/a | 9164 |
+| 1024 | 3109 | 12965 | 12114 | 2869 | 16448 | 10519 |
+| 2048 | 3027 | 12996 | 12023 | 2648 | 17304 | 10307 |
+| 2400 | 2515 | n/a | 10372 | 2355 | n/a | 8443 |
+| 4096 | 3204 | 13603 | 12359 | 2814 | 16570 | 9780 |
+| 8192 | 2759 | 13422 | 10824 | 2153 | 15652 | 7884 |
+| 9216 | 2700 | n/a | 9938 | 2241 | n/a | 7900 |
+| 16384 | 2280 | 13057 | 7976 | 593 | 4272 | 2534 |
+| 32768 | 768 | 4269 | 2882 | 606 | 4405 | 2604 |
+| 262144 | 724 | 3527 | 2630 | 534 | 2418 | 2157 |
+| 1048576 | 674 | 1467 | 2135 | 530 | 1621 | 2055 |
+
+
+
diff --git a/lib/src/fft/pffft/pffft.c b/lib/src/fft/pffft/pffft.c
new file mode 100644
index 0000000..d6cbaaf
--- /dev/null
+++ b/lib/src/fft/pffft/pffft.c
@@ -0,0 +1,1884 @@
+/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com )
+
+ Based on original fortran 77 code from FFTPACKv4 from NETLIB
+ (http://www.netlib.org/fftpack), authored by Dr Paul Swarztrauber
+ of NCAR, in 1985.
+
+ As confirmed by the NCAR fftpack software curators, the following
+ FFTPACKv5 license applies to FFTPACKv4 sources. My changes are
+ released under the same terms.
+
+ FFTPACK license:
+
+ http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
+
+ Copyright (c) 2004 the University Corporation for Atmospheric
+ Research ("UCAR"). All rights reserved. Developed by NCAR's
+ Computational and Information Systems Laboratory, UCAR,
+ www.cisl.ucar.edu.
+
+ Redistribution and use of the Software in source and binary forms,
+ with or without modification, is permitted provided that the
+ following conditions are met:
+
+ - Neither the names of NCAR's Computational and Information Systems
+ Laboratory, the University Corporation for Atmospheric Research,
+ nor the names of its sponsors or contributors may be used to
+ endorse or promote products derived from this Software without
+ specific prior written permission.
+
+ - Redistributions of source code must retain the above copyright
+ notices, this list of conditions, and the disclaimer below.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions, and the disclaimer below in the
+ documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
+ HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
+ SOFTWARE.
+
+
+ PFFFT : a Pretty Fast FFT.
+
+ This file is largerly based on the original FFTPACK implementation, modified in
+ order to take advantage of SIMD instructions of modern CPUs.
+*/
+
+/*
+ ChangeLog:
+ - 2011/10/02, version 1: This is the very first release of this file.
+*/
+
+#include "pffft.h"
+#include <stdlib.h>
+#include <stdio.h>
+#include <math.h>
+#include <assert.h>
+
+/* detect compiler flavour */
+#if defined(_MSC_VER)
+# define COMPILER_MSVC
+#elif defined(__GNUC__)
+# define COMPILER_GCC
+#endif
+
+#if defined(COMPILER_GCC)
+# define ALWAYS_INLINE(return_type) inline return_type __attribute__ ((always_inline))
+# define NEVER_INLINE(return_type) return_type __attribute__ ((noinline))
+# define RESTRICT __restrict
+# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ varname__[size__];
+#elif defined(COMPILER_MSVC)
+# define ALWAYS_INLINE(return_type) __forceinline return_type
+# define NEVER_INLINE(return_type) __declspec(noinline) return_type
+# define RESTRICT __restrict
+# define VLA_ARRAY_ON_STACK(type__, varname__, size__) type__ *varname__ = (type__*)_alloca(size__ * sizeof(type__))
+#endif
+
+
+/*
+ vector support macros: the rest of the code is independant of
+ SSE/Altivec/NEON -- adding support for other platforms with 4-element
+ vectors should be limited to these macros
+*/
+
+
+// define PFFFT_SIMD_DISABLE if you want to use scalar code instead of simd code
+//#define PFFFT_SIMD_DISABLE
+
+/*
+ Altivec support macros
+*/
+#if !defined(PFFFT_SIMD_DISABLE) && (defined(__ppc__) || defined(__ppc64__) || defined(__powerpc__) || defined(__powerpc64__))
+#include <altivec.h>
+typedef vector float v4sf;
+# define SIMD_SZ 4
+# define VZERO() ((vector float) vec_splat_u8(0))
+# define VMUL(a,b) vec_madd(a,b, VZERO())
+# define VADD(a,b) vec_add(a,b)
+# define VMADD(a,b,c) vec_madd(a,b,c)
+# define VSUB(a,b) vec_sub(a,b)
+inline v4sf ld_ps1(const float *p) { v4sf v=vec_lde(0,p); return vec_splat(vec_perm(v, v, vec_lvsl(0, p)), 0); }
+# define LD_PS1(p) ld_ps1(&p)
+# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = vec_mergeh(in1, in2); out2 = vec_mergel(in1, in2); out1 = tmp__; }
+# define UNINTERLEAVE2(in1, in2, out1, out2) { \
+ vector unsigned char vperm1 = (vector unsigned char){0,1,2,3,8,9,10,11,16,17,18,19,24,25,26,27}; \
+ vector unsigned char vperm2 = (vector unsigned char){4,5,6,7,12,13,14,15,20,21,22,23,28,29,30,31}; \
+ v4sf tmp__ = vec_perm(in1, in2, vperm1); out2 = vec_perm(in1, in2, vperm2); out1 = tmp__; \
+ }
+# define VTRANSPOSE4(x0,x1,x2,x3) { \
+ v4sf y0 = vec_mergeh(x0, x2); \
+ v4sf y1 = vec_mergel(x0, x2); \
+ v4sf y2 = vec_mergeh(x1, x3); \
+ v4sf y3 = vec_mergel(x1, x3); \
+ x0 = vec_mergeh(y0, y2); \
+ x1 = vec_mergel(y0, y2); \
+ x2 = vec_mergeh(y1, y3); \
+ x3 = vec_mergel(y1, y3); \
+ }
+# define VSWAPHL(a,b) vec_perm(a,b, (vector unsigned char){16,17,18,19,20,21,22,23,8,9,10,11,12,13,14,15})
+# define VALIGNED(ptr) ((((long long)(ptr)) & 0xF) == 0)
+
+/*
+ SSE1 support macros
+*/
+#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__x86_64__) || defined(_M_X64) || defined(__i386__) || defined(i386) || defined(_M_IX86))
+
+#include <xmmintrin.h>
+typedef __m128 v4sf;
+# define SIMD_SZ 4 // 4 floats by simd vector -- this is pretty much hardcoded in the preprocess/finalize functions anyway so you will have to work if you want to enable AVX with its 256-bit vectors.
+# define VZERO() _mm_setzero_ps()
+# define VMUL(a,b) _mm_mul_ps(a,b)
+# define VADD(a,b) _mm_add_ps(a,b)
+# define VMADD(a,b,c) _mm_add_ps(_mm_mul_ps(a,b), c)
+# define VSUB(a,b) _mm_sub_ps(a,b)
+# define LD_PS1(p) _mm_set1_ps(p)
+# define INTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_unpacklo_ps(in1, in2); out2 = _mm_unpackhi_ps(in1, in2); out1 = tmp__; }
+# define UNINTERLEAVE2(in1, in2, out1, out2) { v4sf tmp__ = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(2,0,2,0)); out2 = _mm_shuffle_ps(in1, in2, _MM_SHUFFLE(3,1,3,1)); out1 = tmp__; }
+# define VTRANSPOSE4(x0,x1,x2,x3) _MM_TRANSPOSE4_PS(x0,x1,x2,x3)
+# define VSWAPHL(a,b) _mm_shuffle_ps(b, a, _MM_SHUFFLE(3,2,1,0))
+# define VALIGNED(ptr) ((((long long)(ptr)) & 0xF) == 0)
+
+/*
+ ARM NEON support macros
+*/
+#elif !defined(PFFFT_SIMD_DISABLE) && (defined(__arm__) || defined(__aarch64__) || defined(__arm64__))
+# include <arm_neon.h>
+typedef float32x4_t v4sf;
+# define SIMD_SZ 4
+# define VZERO() vdupq_n_f32(0)
+# define VMUL(a,b) vmulq_f32(a,b)
+# define VADD(a,b) vaddq_f32(a,b)
+# define VMADD(a,b,c) vmlaq_f32(c,a,b)
+# define VSUB(a,b) vsubq_f32(a,b)
+# define LD_PS1(p) vld1q_dup_f32(&(p))
+# define INTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vzipq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; }
+# define UNINTERLEAVE2(in1, in2, out1, out2) { float32x4x2_t tmp__ = vuzpq_f32(in1,in2); out1=tmp__.val[0]; out2=tmp__.val[1]; }
+# define VTRANSPOSE4(x0,x1,x2,x3) { \
+ float32x4x2_t t0_ = vzipq_f32(x0, x2); \
+ float32x4x2_t t1_ = vzipq_f32(x1, x3); \
+ float32x4x2_t u0_ = vzipq_f32(t0_.val[0], t1_.val[0]); \
+ float32x4x2_t u1_ = vzipq_f32(t0_.val[1], t1_.val[1]); \
+ x0 = u0_.val[0]; x1 = u0_.val[1]; x2 = u1_.val[0]; x3 = u1_.val[1]; \
+ }
+// marginally faster version
+//# define VTRANSPOSE4(x0,x1,x2,x3) { asm("vtrn.32 %q0, %q1;\n vtrn.32 %q2,%q3\n vswp %f0,%e2\n vswp %f1,%e3" : "+w"(x0), "+w"(x1), "+w"(x2), "+w"(x3)::); }
+# define VSWAPHL(a,b) vcombine_f32(vget_low_f32(b), vget_high_f32(a))
+# define VALIGNED(ptr) ((((long long)(ptr)) & 0x3) == 0)
+#else
+# if !defined(PFFFT_SIMD_DISABLE)
+# warning "building with simd disabled !\n";
+# define PFFFT_SIMD_DISABLE // fallback to scalar code
+# endif
+#endif
+
+// fallback mode for situations where SSE/Altivec are not available, use scalar mode instead
+#ifdef PFFFT_SIMD_DISABLE
+typedef float v4sf;
+# define SIMD_SZ 1
+# define VZERO() 0.f
+# define VMUL(a,b) ((a)*(b))
+# define VADD(a,b) ((a)+(b))
+# define VMADD(a,b,c) ((a)*(b)+(c))
+# define VSUB(a,b) ((a)-(b))
+# define LD_PS1(p) (p)
+# define VALIGNED(ptr) ((((long long)(ptr)) & 0x3) == 0)
+#endif
+
+// shortcuts for complex multiplcations
+#define VCPLXMUL(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VSUB(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VADD(ai,tmp); }
+#define VCPLXMULCONJ(ar,ai,br,bi) { v4sf tmp; tmp=VMUL(ar,bi); ar=VMUL(ar,br); ar=VADD(ar,VMUL(ai,bi)); ai=VMUL(ai,br); ai=VSUB(ai,tmp); }
+#ifndef SVMUL
+// multiply a scalar with a vector
+#define SVMUL(f,v) VMUL(LD_PS1(f),v)
+#endif
+
+#if !defined(PFFFT_SIMD_DISABLE)
+typedef union v4sf_union {
+ v4sf v;
+ float f[4];
+} v4sf_union;
+
+#include <string.h>
+
+#define assertv4(v,f0,f1,f2,f3) assert(v.f[0] == (f0) && v.f[1] == (f1) && v.f[2] == (f2) && v.f[3] == (f3))
+
+/* detect bugs with the vector support macros */
+void validate_pffft_simd(void) {
+ float f[16] = { 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 };
+ v4sf_union a0, a1, a2, a3, t, u;
+ memcpy(a0.f, f, 4*sizeof(float));
+ memcpy(a1.f, f+4, 4*sizeof(float));
+ memcpy(a2.f, f+8, 4*sizeof(float));
+ memcpy(a3.f, f+12, 4*sizeof(float));
+
+ t = a0; u = a1; t.v = VZERO();
+ printf("VZERO=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 0, 0, 0, 0);
+ t.v = VADD(a1.v, a2.v);
+ printf("VADD(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 12, 14, 16, 18);
+ t.v = VMUL(a1.v, a2.v);
+ printf("VMUL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 45, 60, 77);
+ t.v = VMADD(a1.v, a2.v,a0.v);
+ printf("VMADD(4:7,8:11,0:3)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]); assertv4(t, 32, 46, 62, 80);
+
+ INTERLEAVE2(a1.v,a2.v,t.v,u.v);
+ printf("INTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]);
+ assertv4(t, 4, 8, 5, 9); assertv4(u, 6, 10, 7, 11);
+ UNINTERLEAVE2(a1.v,a2.v,t.v,u.v);
+ printf("UNINTERLEAVE2(4:7,8:11)=[%2g %2g %2g %2g] [%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3], u.f[0], u.f[1], u.f[2], u.f[3]);
+ assertv4(t, 4, 6, 8, 10); assertv4(u, 5, 7, 9, 11);
+
+ t.v=LD_PS1(f[15]);
+ printf("LD_PS1(15)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]);
+ assertv4(t, 15, 15, 15, 15);
+ t.v = VSWAPHL(a1.v, a2.v);
+ printf("VSWAPHL(4:7,8:11)=[%2g %2g %2g %2g]\n", t.f[0], t.f[1], t.f[2], t.f[3]);
+ assertv4(t, 8, 9, 6, 7);
+ VTRANSPOSE4(a0.v, a1.v, a2.v, a3.v);
+ printf("VTRANSPOSE4(0:3,4:7,8:11,12:15)=[%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g] [%2g %2g %2g %2g]\n",
+ a0.f[0], a0.f[1], a0.f[2], a0.f[3], a1.f[0], a1.f[1], a1.f[2], a1.f[3],
+ a2.f[0], a2.f[1], a2.f[2], a2.f[3], a3.f[0], a3.f[1], a3.f[2], a3.f[3]);
+ assertv4(a0, 0, 4, 8, 12); assertv4(a1, 1, 5, 9, 13); assertv4(a2, 2, 6, 10, 14); assertv4(a3, 3, 7, 11, 15);
+}
+#else
+void validate_pffft_simd() {} // allow test_pffft.c to call this function even when simd is not available..
+#endif //!PFFFT_SIMD_DISABLE
+
+/* SSE and co like 16-bytes aligned pointers */
+#define MALLOC_V4SF_ALIGNMENT 64 // with a 64-byte alignment, we are even aligned on L2 cache lines...
+void *pffft_aligned_malloc(size_t nb_bytes) {
+ void *p, *p0 = malloc(nb_bytes + MALLOC_V4SF_ALIGNMENT);
+ if (!p0) return (void *) 0;
+ p = (void *) (((size_t) p0 + MALLOC_V4SF_ALIGNMENT) & (~((size_t) (MALLOC_V4SF_ALIGNMENT-1))));
+ *((void **) p - 1) = p0;
+ return p;
+}
+
+void pffft_aligned_free(void *p) {
+ if (p) free(*((void **) p - 1));
+}
+
+int pffft_simd_size(void) { return SIMD_SZ; }
+
+/*
+ passf2 and passb2 has been merged here, fsign = -1 for passf2, +1 for passb2
+*/
+static NEVER_INLINE(void) passf2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1, float fsign) {
+ int k, i;
+ int l1ido = l1*ido;
+ if (ido <= 2) {
+ for (k=0; k < l1ido; k += ido, ch += ido, cc+= 2*ido) {
+ ch[0] = VADD(cc[0], cc[ido+0]);
+ ch[l1ido] = VSUB(cc[0], cc[ido+0]);
+ ch[1] = VADD(cc[1], cc[ido+1]);
+ ch[l1ido + 1] = VSUB(cc[1], cc[ido+1]);
+ }
+ } else {
+ for (k=0; k < l1ido; k += ido, ch += ido, cc += 2*ido) {
+ for (i=0; i<ido-1; i+=2) {
+ v4sf tr2 = VSUB(cc[i+0], cc[i+ido+0]);
+ v4sf ti2 = VSUB(cc[i+1], cc[i+ido+1]);
+ v4sf wr = LD_PS1(wa1[i]), wi = VMUL(LD_PS1(fsign), LD_PS1(wa1[i+1]));
+ ch[i] = VADD(cc[i+0], cc[i+ido+0]);
+ ch[i+1] = VADD(cc[i+1], cc[i+ido+1]);
+ VCPLXMUL(tr2, ti2, wr, wi);
+ ch[i+l1ido] = tr2;
+ ch[i+l1ido+1] = ti2;
+ }
+ }
+ }
+}
+
+/*
+ passf3 and passb3 has been merged here, fsign = -1 for passf3, +1 for passb3
+*/
+static NEVER_INLINE(void) passf3_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
+ const float *wa1, const float *wa2, float fsign) {
+ static const float taur = -0.5f;
+ float taui = 0.866025403784439f*fsign;
+ int i, k;
+ v4sf tr2, ti2, cr2, ci2, cr3, ci3, dr2, di2, dr3, di3;
+ int l1ido = l1*ido;
+ float wr1, wi1, wr2, wi2;
+ assert(ido > 2);
+ for (k=0; k< l1ido; k += ido, cc+= 3*ido, ch +=ido) {
+ for (i=0; i<ido-1; i+=2) {
+ tr2 = VADD(cc[i+ido], cc[i+2*ido]);
+ cr2 = VADD(cc[i], SVMUL(taur,tr2));
+ ch[i] = VADD(cc[i], tr2);
+ ti2 = VADD(cc[i+ido+1], cc[i+2*ido+1]);
+ ci2 = VADD(cc[i +1], SVMUL(taur,ti2));
+ ch[i+1] = VADD(cc[i+1], ti2);
+ cr3 = SVMUL(taui, VSUB(cc[i+ido], cc[i+2*ido]));
+ ci3 = SVMUL(taui, VSUB(cc[i+ido+1], cc[i+2*ido+1]));
+ dr2 = VSUB(cr2, ci3);
+ dr3 = VADD(cr2, ci3);
+ di2 = VADD(ci2, cr3);
+ di3 = VSUB(ci2, cr3);
+ wr1=wa1[i]; wi1=fsign*wa1[i+1]; wr2=wa2[i]; wi2=fsign*wa2[i+1];
+ VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
+ ch[i+l1ido] = dr2;
+ ch[i+l1ido + 1] = di2;
+ VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
+ ch[i+2*l1ido] = dr3;
+ ch[i+2*l1ido+1] = di3;
+ }
+ }
+} /* passf3 */
+
+static NEVER_INLINE(void) passf4_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
+ const float *wa1, const float *wa2, const float *wa3, float fsign) {
+ /* isign == -1 for forward transform and +1 for backward transform */
+
+ int i, k;
+ v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
+ int l1ido = l1*ido;
+ if (ido == 2) {
+ for (k=0; k < l1ido; k += ido, ch += ido, cc += 4*ido) {
+ tr1 = VSUB(cc[0], cc[2*ido + 0]);
+ tr2 = VADD(cc[0], cc[2*ido + 0]);
+ ti1 = VSUB(cc[1], cc[2*ido + 1]);
+ ti2 = VADD(cc[1], cc[2*ido + 1]);
+ ti4 = VMUL(VSUB(cc[1*ido + 0], cc[3*ido + 0]), LD_PS1(fsign));
+ tr4 = VMUL(VSUB(cc[3*ido + 1], cc[1*ido + 1]), LD_PS1(fsign));
+ tr3 = VADD(cc[ido + 0], cc[3*ido + 0]);
+ ti3 = VADD(cc[ido + 1], cc[3*ido + 1]);
+
+ ch[0*l1ido + 0] = VADD(tr2, tr3);
+ ch[0*l1ido + 1] = VADD(ti2, ti3);
+ ch[1*l1ido + 0] = VADD(tr1, tr4);
+ ch[1*l1ido + 1] = VADD(ti1, ti4);
+ ch[2*l1ido + 0] = VSUB(tr2, tr3);
+ ch[2*l1ido + 1] = VSUB(ti2, ti3);
+ ch[3*l1ido + 0] = VSUB(tr1, tr4);
+ ch[3*l1ido + 1] = VSUB(ti1, ti4);
+ }
+ } else {
+ for (k=0; k < l1ido; k += ido, ch+=ido, cc += 4*ido) {
+ for (i=0; i<ido-1; i+=2) {
+ float wr1, wi1, wr2, wi2, wr3, wi3;
+ tr1 = VSUB(cc[i + 0], cc[i + 2*ido + 0]);
+ tr2 = VADD(cc[i + 0], cc[i + 2*ido + 0]);
+ ti1 = VSUB(cc[i + 1], cc[i + 2*ido + 1]);
+ ti2 = VADD(cc[i + 1], cc[i + 2*ido + 1]);
+ tr4 = VMUL(VSUB(cc[i + 3*ido + 1], cc[i + 1*ido + 1]), LD_PS1(fsign));
+ ti4 = VMUL(VSUB(cc[i + 1*ido + 0], cc[i + 3*ido + 0]), LD_PS1(fsign));
+ tr3 = VADD(cc[i + ido + 0], cc[i + 3*ido + 0]);
+ ti3 = VADD(cc[i + ido + 1], cc[i + 3*ido + 1]);
+
+ ch[i] = VADD(tr2, tr3);
+ cr3 = VSUB(tr2, tr3);
+ ch[i + 1] = VADD(ti2, ti3);
+ ci3 = VSUB(ti2, ti3);
+
+ cr2 = VADD(tr1, tr4);
+ cr4 = VSUB(tr1, tr4);
+ ci2 = VADD(ti1, ti4);
+ ci4 = VSUB(ti1, ti4);
+ wr1=wa1[i]; wi1=fsign*wa1[i+1];
+ VCPLXMUL(cr2, ci2, LD_PS1(wr1), LD_PS1(wi1));
+ wr2=wa2[i]; wi2=fsign*wa2[i+1];
+ ch[i + l1ido] = cr2;
+ ch[i + l1ido + 1] = ci2;
+
+ VCPLXMUL(cr3, ci3, LD_PS1(wr2), LD_PS1(wi2));
+ wr3=wa3[i]; wi3=fsign*wa3[i+1];
+ ch[i + 2*l1ido] = cr3;
+ ch[i + 2*l1ido + 1] = ci3;
+
+ VCPLXMUL(cr4, ci4, LD_PS1(wr3), LD_PS1(wi3));
+ ch[i + 3*l1ido] = cr4;
+ ch[i + 3*l1ido + 1] = ci4;
+ }
+ }
+ }
+} /* passf4 */
+
+/*
+ passf5 and passb5 has been merged here, fsign = -1 for passf5, +1 for passb5
+*/
+static NEVER_INLINE(void) passf5_ps(int ido, int l1, const v4sf *cc, v4sf *ch,
+ const float *wa1, const float *wa2,
+ const float *wa3, const float *wa4, float fsign) {
+ static const float tr11 = .309016994374947f;
+ const float ti11 = .951056516295154f*fsign;
+ static const float tr12 = -.809016994374947f;
+ const float ti12 = .587785252292473f*fsign;
+
+ /* Local variables */
+ int i, k;
+ v4sf ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3,
+ ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5;
+
+ float wr1, wi1, wr2, wi2, wr3, wi3, wr4, wi4;
+
+#define cc_ref(a_1,a_2) cc[(a_2-1)*ido + a_1 + 1]
+#define ch_ref(a_1,a_3) ch[(a_3-1)*l1*ido + a_1 + 1]
+
+ assert(ido > 2);
+ for (k = 0; k < l1; ++k, cc += 5*ido, ch += ido) {
+ for (i = 0; i < ido-1; i += 2) {
+ ti5 = VSUB(cc_ref(i , 2), cc_ref(i , 5));
+ ti2 = VADD(cc_ref(i , 2), cc_ref(i , 5));
+ ti4 = VSUB(cc_ref(i , 3), cc_ref(i , 4));
+ ti3 = VADD(cc_ref(i , 3), cc_ref(i , 4));
+ tr5 = VSUB(cc_ref(i-1, 2), cc_ref(i-1, 5));
+ tr2 = VADD(cc_ref(i-1, 2), cc_ref(i-1, 5));
+ tr4 = VSUB(cc_ref(i-1, 3), cc_ref(i-1, 4));
+ tr3 = VADD(cc_ref(i-1, 3), cc_ref(i-1, 4));
+ ch_ref(i-1, 1) = VADD(cc_ref(i-1, 1), VADD(tr2, tr3));
+ ch_ref(i , 1) = VADD(cc_ref(i , 1), VADD(ti2, ti3));
+ cr2 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr11, tr2),SVMUL(tr12, tr3)));
+ ci2 = VADD(cc_ref(i , 1), VADD(SVMUL(tr11, ti2),SVMUL(tr12, ti3)));
+ cr3 = VADD(cc_ref(i-1, 1), VADD(SVMUL(tr12, tr2),SVMUL(tr11, tr3)));
+ ci3 = VADD(cc_ref(i , 1), VADD(SVMUL(tr12, ti2),SVMUL(tr11, ti3)));
+ cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4));
+ ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
+ cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4));
+ ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
+ dr3 = VSUB(cr3, ci4);
+ dr4 = VADD(cr3, ci4);
+ di3 = VADD(ci3, cr4);
+ di4 = VSUB(ci3, cr4);
+ dr5 = VADD(cr2, ci5);
+ dr2 = VSUB(cr2, ci5);
+ di5 = VSUB(ci2, cr5);
+ di2 = VADD(ci2, cr5);
+ wr1=wa1[i]; wi1=fsign*wa1[i+1]; wr2=wa2[i]; wi2=fsign*wa2[i+1];
+ wr3=wa3[i]; wi3=fsign*wa3[i+1]; wr4=wa4[i]; wi4=fsign*wa4[i+1];
+ VCPLXMUL(dr2, di2, LD_PS1(wr1), LD_PS1(wi1));
+ ch_ref(i - 1, 2) = dr2;
+ ch_ref(i, 2) = di2;
+ VCPLXMUL(dr3, di3, LD_PS1(wr2), LD_PS1(wi2));
+ ch_ref(i - 1, 3) = dr3;
+ ch_ref(i, 3) = di3;
+ VCPLXMUL(dr4, di4, LD_PS1(wr3), LD_PS1(wi3));
+ ch_ref(i - 1, 4) = dr4;
+ ch_ref(i, 4) = di4;
+ VCPLXMUL(dr5, di5, LD_PS1(wr4), LD_PS1(wi4));
+ ch_ref(i - 1, 5) = dr5;
+ ch_ref(i, 5) = di5;
+ }
+ }
+#undef ch_ref
+#undef cc_ref
+}
+
+static NEVER_INLINE(void) radf2_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch, const float *wa1) {
+ static const float minus_one = -1.f;
+ int i, k, l1ido = l1*ido;
+ for (k=0; k < l1ido; k += ido) {
+ v4sf a = cc[k], b = cc[k + l1ido];
+ ch[2*k] = VADD(a, b);
+ ch[2*(k+ido)-1] = VSUB(a, b);
+ }
+ if (ido < 2) return;
+ if (ido != 2) {
+ for (k=0; k < l1ido; k += ido) {
+ for (i=2; i<ido; i+=2) {
+ v4sf tr2 = cc[i - 1 + k + l1ido], ti2 = cc[i + k + l1ido];
+ v4sf br = cc[i - 1 + k], bi = cc[i + k];
+ VCPLXMULCONJ(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
+ ch[i + 2*k] = VADD(bi, ti2);
+ ch[2*(k+ido) - i] = VSUB(ti2, bi);
+ ch[i - 1 + 2*k] = VADD(br, tr2);
+ ch[2*(k+ido) - i -1] = VSUB(br, tr2);
+ }
+ }
+ if (ido % 2 == 1) return;
+ }
+ for (k=0; k < l1ido; k += ido) {
+ ch[2*k + ido] = SVMUL(minus_one, cc[ido-1 + k + l1ido]);
+ ch[2*k + ido-1] = cc[k + ido-1];
+ }
+} /* radf2 */
+
+
+static NEVER_INLINE(void) radb2_ps(int ido, int l1, const v4sf *cc, v4sf *ch, const float *wa1) {
+ static const float minus_two=-2;
+ int i, k, l1ido = l1*ido;
+ v4sf a,b,c,d, tr2, ti2;
+ for (k=0; k < l1ido; k += ido) {
+ a = cc[2*k]; b = cc[2*(k+ido) - 1];
+ ch[k] = VADD(a, b);
+ ch[k + l1ido] =VSUB(a, b);
+ }
+ if (ido < 2) return;
+ if (ido != 2) {
+ for (k = 0; k < l1ido; k += ido) {
+ for (i = 2; i < ido; i += 2) {
+ a = cc[i-1 + 2*k]; b = cc[2*(k + ido) - i - 1];
+ c = cc[i+0 + 2*k]; d = cc[2*(k + ido) - i + 0];
+ ch[i-1 + k] = VADD(a, b);
+ tr2 = VSUB(a, b);
+ ch[i+0 + k] = VSUB(c, d);
+ ti2 = VADD(c, d);
+ VCPLXMUL(tr2, ti2, LD_PS1(wa1[i - 2]), LD_PS1(wa1[i - 1]));
+ ch[i-1 + k + l1ido] = tr2;
+ ch[i+0 + k + l1ido] = ti2;
+ }
+ }
+ if (ido % 2 == 1) return;
+ }
+ for (k = 0; k < l1ido; k += ido) {
+ a = cc[2*k + ido-1]; b = cc[2*k + ido];
+ ch[k + ido-1] = VADD(a,a);
+ ch[k + ido-1 + l1ido] = SVMUL(minus_two, b);
+ }
+} /* radb2 */
+
+static void radf3_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
+ const float *wa1, const float *wa2) {
+ static const float taur = -0.5f;
+ static const float taui = 0.866025403784439f;
+ int i, k, ic;
+ v4sf ci2, di2, di3, cr2, dr2, dr3, ti2, ti3, tr2, tr3, wr1, wi1, wr2, wi2;
+ for (k=0; k<l1; k++) {
+ cr2 = VADD(cc[(k + l1)*ido], cc[(k + 2*l1)*ido]);
+ ch[3*k*ido] = VADD(cc[k*ido], cr2);
+ ch[(3*k+2)*ido] = SVMUL(taui, VSUB(cc[(k + l1*2)*ido], cc[(k + l1)*ido]));
+ ch[ido-1 + (3*k + 1)*ido] = VADD(cc[k*ido], SVMUL(taur, cr2));
+ }
+ if (ido == 1) return;
+ for (k=0; k<l1; k++) {
+ for (i=2; i<ido; i+=2) {
+ ic = ido - i;
+ wr1 = LD_PS1(wa1[i - 2]); wi1 = LD_PS1(wa1[i - 1]);
+ dr2 = cc[i - 1 + (k + l1)*ido]; di2 = cc[i + (k + l1)*ido];
+ VCPLXMULCONJ(dr2, di2, wr1, wi1);
+
+ wr2 = LD_PS1(wa2[i - 2]); wi2 = LD_PS1(wa2[i - 1]);
+ dr3 = cc[i - 1 + (k + l1*2)*ido]; di3 = cc[i + (k + l1*2)*ido];
+ VCPLXMULCONJ(dr3, di3, wr2, wi2);
+
+ cr2 = VADD(dr2, dr3);
+ ci2 = VADD(di2, di3);
+ ch[i - 1 + 3*k*ido] = VADD(cc[i - 1 + k*ido], cr2);
+ ch[i + 3*k*ido] = VADD(cc[i + k*ido], ci2);
+ tr2 = VADD(cc[i - 1 + k*ido], SVMUL(taur, cr2));
+ ti2 = VADD(cc[i + k*ido], SVMUL(taur, ci2));
+ tr3 = SVMUL(taui, VSUB(di2, di3));
+ ti3 = SVMUL(taui, VSUB(dr3, dr2));
+ ch[i - 1 + (3*k + 2)*ido] = VADD(tr2, tr3);
+ ch[ic - 1 + (3*k + 1)*ido] = VSUB(tr2, tr3);
+ ch[i + (3*k + 2)*ido] = VADD(ti2, ti3);
+ ch[ic + (3*k + 1)*ido] = VSUB(ti3, ti2);
+ }
+ }
+} /* radf3 */
+
+
+static void radb3_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
+ const float *wa1, const float *wa2)
+{
+ static const float taur = -0.5f;
+ static const float taui = 0.866025403784439f;
+ static const float taui_2 = 0.866025403784439f*2;
+ int i, k, ic;
+ v4sf ci2, ci3, di2, di3, cr2, cr3, dr2, dr3, ti2, tr2;
+ for (k=0; k<l1; k++) {
+ tr2 = cc[ido-1 + (3*k + 1)*ido]; tr2 = VADD(tr2,tr2);
+ cr2 = VMADD(LD_PS1(taur), tr2, cc[3*k*ido]);
+ ch[k*ido] = VADD(cc[3*k*ido], tr2);
+ ci3 = SVMUL(taui_2, cc[(3*k + 2)*ido]);
+ ch[(k + l1)*ido] = VSUB(cr2, ci3);
+ ch[(k + 2*l1)*ido] = VADD(cr2, ci3);
+ }
+ if (ido == 1) return;
+ for (k=0; k<l1; k++) {
+ for (i=2; i<ido; i+=2) {
+ ic = ido - i;
+ tr2 = VADD(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]);
+ cr2 = VMADD(LD_PS1(taur), tr2, cc[i - 1 + 3*k*ido]);
+ ch[i - 1 + k*ido] = VADD(cc[i - 1 + 3*k*ido], tr2);
+ ti2 = VSUB(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]);
+ ci2 = VMADD(LD_PS1(taur), ti2, cc[i + 3*k*ido]);
+ ch[i + k*ido] = VADD(cc[i + 3*k*ido], ti2);
+ cr3 = SVMUL(taui, VSUB(cc[i - 1 + (3*k + 2)*ido], cc[ic - 1 + (3*k + 1)*ido]));
+ ci3 = SVMUL(taui, VADD(cc[i + (3*k + 2)*ido], cc[ic + (3*k + 1)*ido]));
+ dr2 = VSUB(cr2, ci3);
+ dr3 = VADD(cr2, ci3);
+ di2 = VADD(ci2, cr3);
+ di3 = VSUB(ci2, cr3);
+ VCPLXMUL(dr2, di2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
+ ch[i - 1 + (k + l1)*ido] = dr2;
+ ch[i + (k + l1)*ido] = di2;
+ VCPLXMUL(dr3, di3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
+ ch[i - 1 + (k + 2*l1)*ido] = dr3;
+ ch[i + (k + 2*l1)*ido] = di3;
+ }
+ }
+} /* radb3 */
+
+static NEVER_INLINE(void) radf4_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf * RESTRICT ch,
+ const float * RESTRICT wa1, const float * RESTRICT wa2, const float * RESTRICT wa3)
+{
+ static const float minus_hsqt2 = (float)-0.7071067811865475;
+ int i, k, l1ido = l1*ido;
+ {
+ const v4sf *RESTRICT cc_ = cc, * RESTRICT cc_end = cc + l1ido;
+ v4sf * RESTRICT ch_ = ch;
+ while (cc < cc_end) {
+ // this loop represents between 25% and 40% of total radf4_ps cost !
+ v4sf a0 = cc[0], a1 = cc[l1ido];
+ v4sf a2 = cc[2*l1ido], a3 = cc[3*l1ido];
+ v4sf tr1 = VADD(a1, a3);
+ v4sf tr2 = VADD(a0, a2);
+ ch[2*ido-1] = VSUB(a0, a2);
+ ch[2*ido ] = VSUB(a3, a1);
+ ch[0 ] = VADD(tr1, tr2);
+ ch[4*ido-1] = VSUB(tr2, tr1);
+ cc += ido; ch += 4*ido;
+ }
+ cc = cc_; ch = ch_;
+ }
+ if (ido < 2) return;
+ if (ido != 2) {
+ for (k = 0; k < l1ido; k += ido) {
+ const v4sf * RESTRICT pc = (v4sf*)(cc + 1 + k);
+ for (i=2; i<ido; i += 2, pc += 2) {
+ int ic = ido - i;
+ v4sf wr, wi, cr2, ci2, cr3, ci3, cr4, ci4;
+ v4sf tr1, ti1, tr2, ti2, tr3, ti3, tr4, ti4;
+
+ cr2 = pc[1*l1ido+0];
+ ci2 = pc[1*l1ido+1];
+ wr=LD_PS1(wa1[i - 2]);
+ wi=LD_PS1(wa1[i - 1]);
+ VCPLXMULCONJ(cr2,ci2,wr,wi);
+
+ cr3 = pc[2*l1ido+0];
+ ci3 = pc[2*l1ido+1];
+ wr = LD_PS1(wa2[i-2]);
+ wi = LD_PS1(wa2[i-1]);
+ VCPLXMULCONJ(cr3, ci3, wr, wi);
+
+ cr4 = pc[3*l1ido];
+ ci4 = pc[3*l1ido+1];
+ wr = LD_PS1(wa3[i-2]);
+ wi = LD_PS1(wa3[i-1]);
+ VCPLXMULCONJ(cr4, ci4, wr, wi);
+
+ /* at this point, on SSE, five of "cr2 cr3 cr4 ci2 ci3 ci4" should be loaded in registers */
+
+ tr1 = VADD(cr2,cr4);
+ tr4 = VSUB(cr4,cr2);
+ tr2 = VADD(pc[0],cr3);
+ tr3 = VSUB(pc[0],cr3);
+ ch[i - 1 + 4*k] = VADD(tr1,tr2);
+ ch[ic - 1 + 4*k + 3*ido] = VSUB(tr2,tr1); // at this point tr1 and tr2 can be disposed
+ ti1 = VADD(ci2,ci4);
+ ti4 = VSUB(ci2,ci4);
+ ch[i - 1 + 4*k + 2*ido] = VADD(ti4,tr3);
+ ch[ic - 1 + 4*k + 1*ido] = VSUB(tr3,ti4); // dispose tr3, ti4
+ ti2 = VADD(pc[1],ci3);
+ ti3 = VSUB(pc[1],ci3);
+ ch[i + 4*k] = VADD(ti1, ti2);
+ ch[ic + 4*k + 3*ido] = VSUB(ti1, ti2);
+ ch[i + 4*k + 2*ido] = VADD(tr4, ti3);
+ ch[ic + 4*k + 1*ido] = VSUB(tr4, ti3);
+ }
+ }
+ if (ido % 2 == 1) return;
+ }
+ for (k=0; k<l1ido; k += ido) {
+ v4sf a = cc[ido-1 + k + l1ido], b = cc[ido-1 + k + 3*l1ido];
+ v4sf c = cc[ido-1 + k], d = cc[ido-1 + k + 2*l1ido];
+ v4sf ti1 = SVMUL(minus_hsqt2, VADD(a, b));
+ v4sf tr1 = SVMUL(minus_hsqt2, VSUB(b, a));
+ ch[ido-1 + 4*k] = VADD(tr1, c);
+ ch[ido-1 + 4*k + 2*ido] = VSUB(c, tr1);
+ ch[4*k + 1*ido] = VSUB(ti1, d);
+ ch[4*k + 3*ido] = VADD(ti1, d);
+ }
+} /* radf4 */
+
+
+static NEVER_INLINE(void) radb4_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
+ const float * RESTRICT wa1, const float * RESTRICT wa2, const float *RESTRICT wa3)
+{
+ static const float minus_sqrt2 = (float)-1.414213562373095;
+ static const float two = 2.f;
+ int i, k, l1ido = l1*ido;
+ v4sf ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4;
+ {
+ const v4sf *RESTRICT cc_ = cc, * RESTRICT ch_end = ch + l1ido;
+ v4sf *ch_ = ch;
+ while (ch < ch_end) {
+ v4sf a = cc[0], b = cc[4*ido-1];
+ v4sf c = cc[2*ido], d = cc[2*ido-1];
+ tr3 = SVMUL(two,d);
+ tr2 = VADD(a,b);
+ tr1 = VSUB(a,b);
+ tr4 = SVMUL(two,c);
+ ch[0*l1ido] = VADD(tr2, tr3);
+ ch[2*l1ido] = VSUB(tr2, tr3);
+ ch[1*l1ido] = VSUB(tr1, tr4);
+ ch[3*l1ido] = VADD(tr1, tr4);
+
+ cc += 4*ido; ch += ido;
+ }
+ cc = cc_; ch = ch_;
+ }
+ if (ido < 2) return;
+ if (ido != 2) {
+ for (k = 0; k < l1ido; k += ido) {
+ const v4sf * RESTRICT pc = (v4sf*)(cc - 1 + 4*k);
+ v4sf * RESTRICT ph = (v4sf*)(ch + k + 1);
+ for (i = 2; i < ido; i += 2) {
+
+ tr1 = VSUB(pc[i], pc[4*ido - i]);
+ tr2 = VADD(pc[i], pc[4*ido - i]);
+ ti4 = VSUB(pc[2*ido + i], pc[2*ido - i]);
+ tr3 = VADD(pc[2*ido + i], pc[2*ido - i]);
+ ph[0] = VADD(tr2, tr3);
+ cr3 = VSUB(tr2, tr3);
+
+ ti3 = VSUB(pc[2*ido + i + 1], pc[2*ido - i + 1]);
+ tr4 = VADD(pc[2*ido + i + 1], pc[2*ido - i + 1]);
+ cr2 = VSUB(tr1, tr4);
+ cr4 = VADD(tr1, tr4);
+
+ ti1 = VADD(pc[i + 1], pc[4*ido - i + 1]);
+ ti2 = VSUB(pc[i + 1], pc[4*ido - i + 1]);
+
+ ph[1] = VADD(ti2, ti3); ph += l1ido;
+ ci3 = VSUB(ti2, ti3);
+ ci2 = VADD(ti1, ti4);
+ ci4 = VSUB(ti1, ti4);
+ VCPLXMUL(cr2, ci2, LD_PS1(wa1[i-2]), LD_PS1(wa1[i-1]));
+ ph[0] = cr2;
+ ph[1] = ci2; ph += l1ido;
+ VCPLXMUL(cr3, ci3, LD_PS1(wa2[i-2]), LD_PS1(wa2[i-1]));
+ ph[0] = cr3;
+ ph[1] = ci3; ph += l1ido;
+ VCPLXMUL(cr4, ci4, LD_PS1(wa3[i-2]), LD_PS1(wa3[i-1]));
+ ph[0] = cr4;
+ ph[1] = ci4; ph = ph - 3*l1ido + 2;
+ }
+ }
+ if (ido % 2 == 1) return;
+ }
+ for (k=0; k < l1ido; k+=ido) {
+ int i0 = 4*k + ido;
+ v4sf c = cc[i0-1], d = cc[i0 + 2*ido-1];
+ v4sf a = cc[i0+0], b = cc[i0 + 2*ido+0];
+ tr1 = VSUB(c,d);
+ tr2 = VADD(c,d);
+ ti1 = VADD(b,a);
+ ti2 = VSUB(b,a);
+ ch[ido-1 + k + 0*l1ido] = VADD(tr2,tr2);
+ ch[ido-1 + k + 1*l1ido] = SVMUL(minus_sqrt2, VSUB(ti1, tr1));
+ ch[ido-1 + k + 2*l1ido] = VADD(ti2, ti2);
+ ch[ido-1 + k + 3*l1ido] = SVMUL(minus_sqrt2, VADD(ti1, tr1));
+ }
+} /* radb4 */
+
+static void radf5_ps(int ido, int l1, const v4sf * RESTRICT cc, v4sf * RESTRICT ch,
+ const float *wa1, const float *wa2, const float *wa3, const float *wa4)
+{
+ static const float tr11 = .309016994374947f;
+ static const float ti11 = .951056516295154f;
+ static const float tr12 = -.809016994374947f;
+ static const float ti12 = .587785252292473f;
+
+ /* System generated locals */
+ int cc_offset, ch_offset;
+
+ /* Local variables */
+ int i, k, ic;
+ v4sf ci2, di2, ci4, ci5, di3, di4, di5, ci3, cr2, cr3, dr2, dr3, dr4, dr5,
+ cr5, cr4, ti2, ti3, ti5, ti4, tr2, tr3, tr4, tr5;
+ int idp2;
+
+
+#define cc_ref(a_1,a_2,a_3) cc[((a_3)*l1 + (a_2))*ido + a_1]
+#define ch_ref(a_1,a_2,a_3) ch[((a_3)*5 + (a_2))*ido + a_1]
+
+ /* Parameter adjustments */
+ ch_offset = 1 + ido * 6;
+ ch -= ch_offset;
+ cc_offset = 1 + ido * (1 + l1);
+ cc -= cc_offset;
+
+ /* Function Body */
+ for (k = 1; k <= l1; ++k) {
+ cr2 = VADD(cc_ref(1, k, 5), cc_ref(1, k, 2));
+ ci5 = VSUB(cc_ref(1, k, 5), cc_ref(1, k, 2));
+ cr3 = VADD(cc_ref(1, k, 4), cc_ref(1, k, 3));
+ ci4 = VSUB(cc_ref(1, k, 4), cc_ref(1, k, 3));
+ ch_ref(1, 1, k) = VADD(cc_ref(1, k, 1), VADD(cr2, cr3));
+ ch_ref(ido, 2, k) = VADD(cc_ref(1, k, 1), VADD(SVMUL(tr11, cr2), SVMUL(tr12, cr3)));
+ ch_ref(1, 3, k) = VADD(SVMUL(ti11, ci5), SVMUL(ti12, ci4));
+ ch_ref(ido, 4, k) = VADD(cc_ref(1, k, 1), VADD(SVMUL(tr12, cr2), SVMUL(tr11, cr3)));
+ ch_ref(1, 5, k) = VSUB(SVMUL(ti12, ci5), SVMUL(ti11, ci4));
+ //printf("pffft: radf5, k=%d ch_ref=%f, ci4=%f\n", k, ch_ref(1, 5, k), ci4);
+ }
+ if (ido == 1) {
+ return;
+ }
+ idp2 = ido + 2;
+ for (k = 1; k <= l1; ++k) {
+ for (i = 3; i <= ido; i += 2) {
+ ic = idp2 - i;
+ dr2 = LD_PS1(wa1[i-3]); di2 = LD_PS1(wa1[i-2]);
+ dr3 = LD_PS1(wa2[i-3]); di3 = LD_PS1(wa2[i-2]);
+ dr4 = LD_PS1(wa3[i-3]); di4 = LD_PS1(wa3[i-2]);
+ dr5 = LD_PS1(wa4[i-3]); di5 = LD_PS1(wa4[i-2]);
+ VCPLXMULCONJ(dr2, di2, cc_ref(i-1, k, 2), cc_ref(i, k, 2));
+ VCPLXMULCONJ(dr3, di3, cc_ref(i-1, k, 3), cc_ref(i, k, 3));
+ VCPLXMULCONJ(dr4, di4, cc_ref(i-1, k, 4), cc_ref(i, k, 4));
+ VCPLXMULCONJ(dr5, di5, cc_ref(i-1, k, 5), cc_ref(i, k, 5));
+ cr2 = VADD(dr2, dr5);
+ ci5 = VSUB(dr5, dr2);
+ cr5 = VSUB(di2, di5);
+ ci2 = VADD(di2, di5);
+ cr3 = VADD(dr3, dr4);
+ ci4 = VSUB(dr4, dr3);
+ cr4 = VSUB(di3, di4);
+ ci3 = VADD(di3, di4);
+ ch_ref(i - 1, 1, k) = VADD(cc_ref(i - 1, k, 1), VADD(cr2, cr3));
+ ch_ref(i, 1, k) = VSUB(cc_ref(i, k, 1), VADD(ci2, ci3));//
+ tr2 = VADD(cc_ref(i - 1, k, 1), VADD(SVMUL(tr11, cr2), SVMUL(tr12, cr3)));
+ ti2 = VSUB(cc_ref(i, k, 1), VADD(SVMUL(tr11, ci2), SVMUL(tr12, ci3)));//
+ tr3 = VADD(cc_ref(i - 1, k, 1), VADD(SVMUL(tr12, cr2), SVMUL(tr11, cr3)));
+ ti3 = VSUB(cc_ref(i, k, 1), VADD(SVMUL(tr12, ci2), SVMUL(tr11, ci3)));//
+ tr5 = VADD(SVMUL(ti11, cr5), SVMUL(ti12, cr4));
+ ti5 = VADD(SVMUL(ti11, ci5), SVMUL(ti12, ci4));
+ tr4 = VSUB(SVMUL(ti12, cr5), SVMUL(ti11, cr4));
+ ti4 = VSUB(SVMUL(ti12, ci5), SVMUL(ti11, ci4));
+ ch_ref(i - 1, 3, k) = VSUB(tr2, tr5);
+ ch_ref(ic - 1, 2, k) = VADD(tr2, tr5);
+ ch_ref(i, 3, k) = VADD(ti2, ti5);
+ ch_ref(ic, 2, k) = VSUB(ti5, ti2);
+ ch_ref(i - 1, 5, k) = VSUB(tr3, tr4);
+ ch_ref(ic - 1, 4, k) = VADD(tr3, tr4);
+ ch_ref(i, 5, k) = VADD(ti3, ti4);
+ ch_ref(ic, 4, k) = VSUB(ti4, ti3);
+ }
+ }
+#undef cc_ref
+#undef ch_ref
+} /* radf5 */
+
+static void radb5_ps(int ido, int l1, const v4sf *RESTRICT cc, v4sf *RESTRICT ch,
+ const float *wa1, const float *wa2, const float *wa3, const float *wa4)
+{
+ static const float tr11 = .309016994374947f;
+ static const float ti11 = .951056516295154f;
+ static const float tr12 = -.809016994374947f;
+ static const float ti12 = .587785252292473f;
+
+ int cc_offset, ch_offset;
+
+ /* Local variables */
+ int i, k, ic;
+ v4sf ci2, ci3, ci4, ci5, di3, di4, di5, di2, cr2, cr3, cr5, cr4, ti2, ti3,
+ ti4, ti5, dr3, dr4, dr5, dr2, tr2, tr3, tr4, tr5;
+ int idp2;
+
+#define cc_ref(a_1,a_2,a_3) cc[((a_3)*5 + (a_2))*ido + a_1]
+#define ch_ref(a_1,a_2,a_3) ch[((a_3)*l1 + (a_2))*ido + a_1]
+
+ /* Parameter adjustments */
+ ch_offset = 1 + ido * (1 + l1);
+ ch -= ch_offset;
+ cc_offset = 1 + ido * 6;
+ cc -= cc_offset;
+
+ /* Function Body */
+ for (k = 1; k <= l1; ++k) {
+ ti5 = VADD(cc_ref(1, 3, k), cc_ref(1, 3, k));
+ ti4 = VADD(cc_ref(1, 5, k), cc_ref(1, 5, k));
+ tr2 = VADD(cc_ref(ido, 2, k), cc_ref(ido, 2, k));
+ tr3 = VADD(cc_ref(ido, 4, k), cc_ref(ido, 4, k));
+ ch_ref(1, k, 1) = VADD(cc_ref(1, 1, k), VADD(tr2, tr3));
+ cr2 = VADD(cc_ref(1, 1, k), VADD(SVMUL(tr11, tr2), SVMUL(tr12, tr3)));
+ cr3 = VADD(cc_ref(1, 1, k), VADD(SVMUL(tr12, tr2), SVMUL(tr11, tr3)));
+ ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
+ ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
+ ch_ref(1, k, 2) = VSUB(cr2, ci5);
+ ch_ref(1, k, 3) = VSUB(cr3, ci4);
+ ch_ref(1, k, 4) = VADD(cr3, ci4);
+ ch_ref(1, k, 5) = VADD(cr2, ci5);
+ }
+ if (ido == 1) {
+ return;
+ }
+ idp2 = ido + 2;
+ for (k = 1; k <= l1; ++k) {
+ for (i = 3; i <= ido; i += 2) {
+ ic = idp2 - i;
+ ti5 = VADD(cc_ref(i , 3, k), cc_ref(ic , 2, k));
+ ti2 = VSUB(cc_ref(i , 3, k), cc_ref(ic , 2, k));
+ ti4 = VADD(cc_ref(i , 5, k), cc_ref(ic , 4, k));
+ ti3 = VSUB(cc_ref(i , 5, k), cc_ref(ic , 4, k));
+ tr5 = VSUB(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k));
+ tr2 = VADD(cc_ref(i-1, 3, k), cc_ref(ic-1, 2, k));
+ tr4 = VSUB(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k));
+ tr3 = VADD(cc_ref(i-1, 5, k), cc_ref(ic-1, 4, k));
+ ch_ref(i - 1, k, 1) = VADD(cc_ref(i-1, 1, k), VADD(tr2, tr3));
+ ch_ref(i, k, 1) = VADD(cc_ref(i, 1, k), VADD(ti2, ti3));
+ cr2 = VADD(cc_ref(i-1, 1, k), VADD(SVMUL(tr11, tr2), SVMUL(tr12, tr3)));
+ ci2 = VADD(cc_ref(i , 1, k), VADD(SVMUL(tr11, ti2), SVMUL(tr12, ti3)));
+ cr3 = VADD(cc_ref(i-1, 1, k), VADD(SVMUL(tr12, tr2), SVMUL(tr11, tr3)));
+ ci3 = VADD(cc_ref(i , 1, k), VADD(SVMUL(tr12, ti2), SVMUL(tr11, ti3)));
+ cr5 = VADD(SVMUL(ti11, tr5), SVMUL(ti12, tr4));
+ ci5 = VADD(SVMUL(ti11, ti5), SVMUL(ti12, ti4));
+ cr4 = VSUB(SVMUL(ti12, tr5), SVMUL(ti11, tr4));
+ ci4 = VSUB(SVMUL(ti12, ti5), SVMUL(ti11, ti4));
+ dr3 = VSUB(cr3, ci4);
+ dr4 = VADD(cr3, ci4);
+ di3 = VADD(ci3, cr4);
+ di4 = VSUB(ci3, cr4);
+ dr5 = VADD(cr2, ci5);
+ dr2 = VSUB(cr2, ci5);
+ di5 = VSUB(ci2, cr5);
+ di2 = VADD(ci2, cr5);
+ VCPLXMUL(dr2, di2, LD_PS1(wa1[i-3]), LD_PS1(wa1[i-2]));
+ VCPLXMUL(dr3, di3, LD_PS1(wa2[i-3]), LD_PS1(wa2[i-2]));
+ VCPLXMUL(dr4, di4, LD_PS1(wa3[i-3]), LD_PS1(wa3[i-2]));
+ VCPLXMUL(dr5, di5, LD_PS1(wa4[i-3]), LD_PS1(wa4[i-2]));
+
+ ch_ref(i-1, k, 2) = dr2; ch_ref(i, k, 2) = di2;
+ ch_ref(i-1, k, 3) = dr3; ch_ref(i, k, 3) = di3;
+ ch_ref(i-1, k, 4) = dr4; ch_ref(i, k, 4) = di4;
+ ch_ref(i-1, k, 5) = dr5; ch_ref(i, k, 5) = di5;
+ }
+ }
+#undef cc_ref
+#undef ch_ref
+} /* radb5 */
+
+static NEVER_INLINE(v4sf *) rfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2,
+ const float *wa, const int *ifac) {
+ v4sf *in = (v4sf*)input_readonly;
+ v4sf *out = (in == work2 ? work1 : work2);
+ int nf = ifac[1], k1;
+ int l2 = n;
+ int iw = n-1;
+ assert(in != out && work1 != work2);
+ for (k1 = 1; k1 <= nf; ++k1) {
+ int kh = nf - k1;
+ int ip = ifac[kh + 2];
+ int l1 = l2 / ip;
+ int ido = n / l2;
+ iw -= (ip - 1)*ido;
+ switch (ip) {
+ case 5: {
+ int ix2 = iw + ido;
+ int ix3 = ix2 + ido;
+ int ix4 = ix3 + ido;
+ radf5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
+ } break;
+ case 4: {
+ int ix2 = iw + ido;
+ int ix3 = ix2 + ido;
+ radf4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
+ } break;
+ case 3: {
+ int ix2 = iw + ido;
+ radf3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
+ } break;
+ case 2:
+ radf2_ps(ido, l1, in, out, &wa[iw]);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ l2 = l1;
+ if (out == work2) {
+ out = work1; in = work2;
+ } else {
+ out = work2; in = work1;
+ }
+ }
+ return in; /* this is in fact the output .. */
+} /* rfftf1 */
+
+static NEVER_INLINE(v4sf *) rfftb1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2,
+ const float *wa, const int *ifac) {
+ v4sf *in = (v4sf*)input_readonly;
+ v4sf *out = (in == work2 ? work1 : work2);
+ int nf = ifac[1], k1;
+ int l1 = 1;
+ int iw = 0;
+ assert(in != out);
+ for (k1=1; k1<=nf; k1++) {
+ int ip = ifac[k1 + 1];
+ int l2 = ip*l1;
+ int ido = n / l2;
+ switch (ip) {
+ case 5: {
+ int ix2 = iw + ido;
+ int ix3 = ix2 + ido;
+ int ix4 = ix3 + ido;
+ radb5_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4]);
+ } break;
+ case 4: {
+ int ix2 = iw + ido;
+ int ix3 = ix2 + ido;
+ radb4_ps(ido, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3]);
+ } break;
+ case 3: {
+ int ix2 = iw + ido;
+ radb3_ps(ido, l1, in, out, &wa[iw], &wa[ix2]);
+ } break;
+ case 2:
+ radb2_ps(ido, l1, in, out, &wa[iw]);
+ break;
+ default:
+ assert(0);
+ break;
+ }
+ l1 = l2;
+ iw += (ip - 1)*ido;
+
+ if (out == work2) {
+ out = work1; in = work2;
+ } else {
+ out = work2; in = work1;
+ }
+ }
+ return in; /* this is in fact the output .. */
+}
+
+static int decompose(int n, int *ifac, const int *ntryh) {
+ int nl = n, nf = 0, i, j = 0;
+ for (j=0; ntryh[j]; ++j) {
+ int ntry = ntryh[j];
+ while (nl != 1) {
+ int nq = nl / ntry;
+ int nr = nl - ntry * nq;
+ if (nr == 0) {
+ ifac[2+nf++] = ntry;
+ nl = nq;
+ if (ntry == 2 && nf != 1) {
+ for (i = 2; i <= nf; ++i) {
+ int ib = nf - i + 2;
+ ifac[ib + 1] = ifac[ib];
+ }
+ ifac[2] = 2;
+ }
+ } else break;
+ }
+ }
+ ifac[0] = n;
+ ifac[1] = nf;
+ return nf;
+}
+
+
+
+static void rffti1_ps(int n, float *wa, int *ifac)
+{
+ static const int ntryh[] = { 4,2,3,5,0 };
+ int k1, j, ii;
+
+ int nf = decompose(n,ifac,ntryh);
+ float argh = (2*M_PI) / n;
+ int is = 0;
+ int nfm1 = nf - 1;
+ int l1 = 1;
+ for (k1 = 1; k1 <= nfm1; k1++) {
+ int ip = ifac[k1 + 1];
+ int ld = 0;
+ int l2 = l1*ip;
+ int ido = n / l2;
+ int ipm = ip - 1;
+ for (j = 1; j <= ipm; ++j) {
+ float argld;
+ int i = is, fi=0;
+ ld += l1;
+ argld = ld*argh;
+ for (ii = 3; ii <= ido; ii += 2) {
+ i += 2;
+ fi += 1;
+ wa[i - 2] = cos(fi*argld);
+ wa[i - 1] = sin(fi*argld);
+ }
+ is += ido;
+ }
+ l1 = l2;
+ }
+} /* rffti1 */
+
+void cffti1_ps(int n, float *wa, int *ifac)
+{
+ static const int ntryh[] = { 5,3,4,2,0 };
+ int k1, j, ii;
+
+ int nf = decompose(n,ifac,ntryh);
+ float argh = (2*M_PI)/(float)n;
+ int i = 1;
+ int l1 = 1;
+ for (k1=1; k1<=nf; k1++) {
+ int ip = ifac[k1+1];
+ int ld = 0;
+ int l2 = l1*ip;
+ int ido = n / l2;
+ int idot = ido + ido + 2;
+ int ipm = ip - 1;
+ for (j=1; j<=ipm; j++) {
+ float argld;
+ int i1 = i, fi = 0;
+ wa[i-1] = 1;
+ wa[i] = 0;
+ ld += l1;
+ argld = ld*argh;
+ for (ii = 4; ii <= idot; ii += 2) {
+ i += 2;
+ fi += 1;
+ wa[i-1] = cos(fi*argld);
+ wa[i] = sin(fi*argld);
+ }
+ if (ip > 5) {
+ wa[i1-1] = wa[i-1];
+ wa[i1] = wa[i];
+ }
+ }
+ l1 = l2;
+ }
+} /* cffti1 */
+
+
+v4sf *cfftf1_ps(int n, const v4sf *input_readonly, v4sf *work1, v4sf *work2, const float *wa, const int *ifac, int isign) {
+ v4sf *in = (v4sf*)input_readonly;
+ v4sf *out = (in == work2 ? work1 : work2);
+ int nf = ifac[1], k1;
+ int l1 = 1;
+ int iw = 0;
+ assert(in != out && work1 != work2);
+ for (k1=2; k1<=nf+1; k1++) {
+ int ip = ifac[k1];
+ int l2 = ip*l1;
+ int ido = n / l2;
+ int idot = ido + ido;
+ switch (ip) {
+ case 5: {
+ int ix2 = iw + idot;
+ int ix3 = ix2 + idot;
+ int ix4 = ix3 + idot;
+ passf5_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], &wa[ix4], isign);
+ } break;
+ case 4: {
+ int ix2 = iw + idot;
+ int ix3 = ix2 + idot;
+ passf4_ps(idot, l1, in, out, &wa[iw], &wa[ix2], &wa[ix3], isign);
+ } break;
+ case 2: {
+ passf2_ps(idot, l1, in, out, &wa[iw], isign);
+ } break;
+ case 3: {
+ int ix2 = iw + idot;
+ passf3_ps(idot, l1, in, out, &wa[iw], &wa[ix2], isign);
+ } break;
+ default:
+ assert(0);
+ }
+ l1 = l2;
+ iw += (ip - 1)*idot;
+ if (out == work2) {
+ out = work1; in = work2;
+ } else {
+ out = work2; in = work1;
+ }
+ }
+
+ return in; /* this is in fact the output .. */
+}
+
+
+struct PFFFT_Setup {
+ int N;
+ int Ncvec; // nb of complex simd vectors (N/4 if PFFFT_COMPLEX, N/8 if PFFFT_REAL)
+ int ifac[15];
+ pffft_transform_t transform;
+ v4sf *data; // allocated room for twiddle coefs
+ float *e; // points into 'data' , N/4*3 elements
+ float *twiddle; // points into 'data', N/4 elements
+};
+
+PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform) {
+ PFFFT_Setup *s = (PFFFT_Setup*)malloc(sizeof(PFFFT_Setup));
+ int k, m;
+ /* unfortunately, the fft size must be a multiple of 16 for complex FFTs
+ and 32 for real FFTs -- a lot of stuff would need to be rewritten to
+ handle other cases (or maybe just switch to a scalar fft, I don't know..) */
+ if (transform == PFFFT_REAL) { assert((N%(2*SIMD_SZ*SIMD_SZ))==0 && N>0); }
+ if (transform == PFFFT_COMPLEX) { assert((N%(SIMD_SZ*SIMD_SZ))==0 && N>0); }
+ //assert((N % 32) == 0);
+ s->N = N;
+ s->transform = transform;
+ /* nb of complex simd vectors */
+ s->Ncvec = (transform == PFFFT_REAL ? N/2 : N)/SIMD_SZ;
+ s->data = (v4sf*)pffft_aligned_malloc(2*s->Ncvec * sizeof(v4sf));
+ s->e = (float*)s->data;
+ s->twiddle = (float*)(s->data + (2*s->Ncvec*(SIMD_SZ-1))/SIMD_SZ);
+
+ if (transform == PFFFT_REAL) {
+ for (k=0; k < s->Ncvec; ++k) {
+ int i = k/SIMD_SZ;
+ int j = k%SIMD_SZ;
+ for (m=0; m < SIMD_SZ-1; ++m) {
+ float A = -2*M_PI*(m+1)*k / N;
+ s->e[(2*(i*3 + m) + 0) * SIMD_SZ + j] = cos(A);
+ s->e[(2*(i*3 + m) + 1) * SIMD_SZ + j] = sin(A);
+ }
+ }
+ rffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
+ } else {
+ for (k=0; k < s->Ncvec; ++k) {
+ int i = k/SIMD_SZ;
+ int j = k%SIMD_SZ;
+ for (m=0; m < SIMD_SZ-1; ++m) {
+ float A = -2*M_PI*(m+1)*k / N;
+ s->e[(2*(i*3 + m) + 0)*SIMD_SZ + j] = cos(A);
+ s->e[(2*(i*3 + m) + 1)*SIMD_SZ + j] = sin(A);
+ }
+ }
+ cffti1_ps(N/SIMD_SZ, s->twiddle, s->ifac);
+ }
+
+ /* check that N is decomposable with allowed prime factors */
+ for (k=0, m=1; k < s->ifac[1]; ++k) { m *= s->ifac[2+k]; }
+ if (m != N/SIMD_SZ) {
+ pffft_destroy_setup(s); s = 0;
+ }
+
+ return s;
+}
+
+
+void pffft_destroy_setup(PFFFT_Setup *s) {
+ pffft_aligned_free(s->data);
+ free(s);
+}
+
+#if !defined(PFFFT_SIMD_DISABLE)
+
+/* [0 0 1 2 3 4 5 6 7 8] -> [0 8 7 6 5 4 3 2 1] */
+static void reversed_copy(int N, const v4sf *in, int in_stride, v4sf *out) {
+ v4sf g0, g1;
+ int k;
+ INTERLEAVE2(in[0], in[1], g0, g1); in += in_stride;
+
+ *--out = VSWAPHL(g0, g1); // [g0l, g0h], [g1l g1h] -> [g1l, g0h]
+ for (k=1; k < N; ++k) {
+ v4sf h0, h1;
+ INTERLEAVE2(in[0], in[1], h0, h1); in += in_stride;
+ *--out = VSWAPHL(g1, h0);
+ *--out = VSWAPHL(h0, h1);
+ g1 = h1;
+ }
+ *--out = VSWAPHL(g1, g0);
+}
+
+static void unreversed_copy(int N, const v4sf *in, v4sf *out, int out_stride) {
+ v4sf g0, g1, h0, h1;
+ int k;
+ g0 = g1 = in[0]; ++in;
+ for (k=1; k < N; ++k) {
+ h0 = *in++; h1 = *in++;
+ g1 = VSWAPHL(g1, h0);
+ h0 = VSWAPHL(h0, h1);
+ UNINTERLEAVE2(h0, g1, out[0], out[1]); out += out_stride;
+ g1 = h1;
+ }
+ h0 = *in++; h1 = g0;
+ g1 = VSWAPHL(g1, h0);
+ h0 = VSWAPHL(h0, h1);
+ UNINTERLEAVE2(h0, g1, out[0], out[1]);
+}
+
+void pffft_zreorder(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) {
+ int k, N = setup->N, Ncvec = setup->Ncvec;
+ const v4sf *vin = (const v4sf*)in;
+ v4sf *vout = (v4sf*)out;
+ assert(in != out);
+ if (setup->transform == PFFFT_REAL) {
+ int dk = N/32;
+ if (direction == PFFFT_FORWARD) {
+ for (k=0; k < dk; ++k) {
+ INTERLEAVE2(vin[k*8 + 0], vin[k*8 + 1], vout[2*(0*dk + k) + 0], vout[2*(0*dk + k) + 1]);
+ INTERLEAVE2(vin[k*8 + 4], vin[k*8 + 5], vout[2*(2*dk + k) + 0], vout[2*(2*dk + k) + 1]);
+ }
+ reversed_copy(dk, vin+2, 8, (v4sf*)(out + N/2));
+ reversed_copy(dk, vin+6, 8, (v4sf*)(out + N));
+ } else {
+ for (k=0; k < dk; ++k) {
+ UNINTERLEAVE2(vin[2*(0*dk + k) + 0], vin[2*(0*dk + k) + 1], vout[k*8 + 0], vout[k*8 + 1]);
+ UNINTERLEAVE2(vin[2*(2*dk + k) + 0], vin[2*(2*dk + k) + 1], vout[k*8 + 4], vout[k*8 + 5]);
+ }
+ unreversed_copy(dk, (v4sf*)(in + N/4), (v4sf*)(out + N - 6*SIMD_SZ), -8);
+ unreversed_copy(dk, (v4sf*)(in + 3*N/4), (v4sf*)(out + N - 2*SIMD_SZ), -8);
+ }
+ } else {
+ if (direction == PFFFT_FORWARD) {
+ for (k=0; k < Ncvec; ++k) {
+ int kk = (k/4) + (k%4)*(Ncvec/4);
+ INTERLEAVE2(vin[k*2], vin[k*2+1], vout[kk*2], vout[kk*2+1]);
+ }
+ } else {
+ for (k=0; k < Ncvec; ++k) {
+ int kk = (k/4) + (k%4)*(Ncvec/4);
+ UNINTERLEAVE2(vin[kk*2], vin[kk*2+1], vout[k*2], vout[k*2+1]);
+ }
+ }
+ }
+}
+
+void pffft_cplx_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
+ int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
+ v4sf r0, i0, r1, i1, r2, i2, r3, i3;
+ v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
+ assert(in != out);
+ for (k=0; k < dk; ++k) {
+ r0 = in[8*k+0]; i0 = in[8*k+1];
+ r1 = in[8*k+2]; i1 = in[8*k+3];
+ r2 = in[8*k+4]; i2 = in[8*k+5];
+ r3 = in[8*k+6]; i3 = in[8*k+7];
+ VTRANSPOSE4(r0,r1,r2,r3);
+ VTRANSPOSE4(i0,i1,i2,i3);
+ VCPLXMUL(r1,i1,e[k*6+0],e[k*6+1]);
+ VCPLXMUL(r2,i2,e[k*6+2],e[k*6+3]);
+ VCPLXMUL(r3,i3,e[k*6+4],e[k*6+5]);
+
+ sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2);
+ sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3);
+ si0 = VADD(i0,i2); di0 = VSUB(i0, i2);
+ si1 = VADD(i1,i3); di1 = VSUB(i1, i3);
+
+ /*
+ transformation for each column is:
+
+ [1 1 1 1 0 0 0 0] [r0]
+ [1 0 -1 0 0 -1 0 1] [r1]
+ [1 -1 1 -1 0 0 0 0] [r2]
+ [1 0 -1 0 0 1 0 -1] [r3]
+ [0 0 0 0 1 1 1 1] * [i0]
+ [0 1 0 -1 1 0 -1 0] [i1]
+ [0 0 0 0 1 -1 1 -1] [i2]
+ [0 -1 0 1 1 0 -1 0] [i3]
+ */
+
+ r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
+ r1 = VADD(dr0, di1); i1 = VSUB(di0, dr1);
+ r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
+ r3 = VSUB(dr0, di1); i3 = VADD(di0, dr1);
+
+ *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
+ *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
+ }
+}
+
+void pffft_cplx_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
+ int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
+ v4sf r0, i0, r1, i1, r2, i2, r3, i3;
+ v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
+ assert(in != out);
+ for (k=0; k < dk; ++k) {
+ r0 = in[8*k+0]; i0 = in[8*k+1];
+ r1 = in[8*k+2]; i1 = in[8*k+3];
+ r2 = in[8*k+4]; i2 = in[8*k+5];
+ r3 = in[8*k+6]; i3 = in[8*k+7];
+
+ sr0 = VADD(r0,r2); dr0 = VSUB(r0, r2);
+ sr1 = VADD(r1,r3); dr1 = VSUB(r1, r3);
+ si0 = VADD(i0,i2); di0 = VSUB(i0, i2);
+ si1 = VADD(i1,i3); di1 = VSUB(i1, i3);
+
+ r0 = VADD(sr0, sr1); i0 = VADD(si0, si1);
+ r1 = VSUB(dr0, di1); i1 = VADD(di0, dr1);
+ r2 = VSUB(sr0, sr1); i2 = VSUB(si0, si1);
+ r3 = VADD(dr0, di1); i3 = VSUB(di0, dr1);
+
+ VCPLXMULCONJ(r1,i1,e[k*6+0],e[k*6+1]);
+ VCPLXMULCONJ(r2,i2,e[k*6+2],e[k*6+3]);
+ VCPLXMULCONJ(r3,i3,e[k*6+4],e[k*6+5]);
+
+ VTRANSPOSE4(r0,r1,r2,r3);
+ VTRANSPOSE4(i0,i1,i2,i3);
+
+ *out++ = r0; *out++ = i0; *out++ = r1; *out++ = i1;
+ *out++ = r2; *out++ = i2; *out++ = r3; *out++ = i3;
+ }
+}
+
+
+static ALWAYS_INLINE(void) pffft_real_finalize_4x4(const v4sf *in0, const v4sf *in1, const v4sf *in,
+ const v4sf *e, v4sf *out) {
+ v4sf r0, i0, r1, i1, r2, i2, r3, i3;
+ v4sf sr0, dr0, sr1, dr1, si0, di0, si1, di1;
+ r0 = *in0; i0 = *in1;
+ r1 = *in++; i1 = *in++; r2 = *in++; i2 = *in++; r3 = *in++; i3 = *in++;
+ VTRANSPOSE4(r0,r1,r2,r3);
+ VTRANSPOSE4(i0,i1,i2,i3);
+
+ /*
+ transformation for each column is:
+
+ [1 1 1 1 0 0 0 0] [r0]
+ [1 0 -1 0 0 -1 0 1] [r1]
+ [1 0 -1 0 0 1 0 -1] [r2]
+ [1 -1 1 -1 0 0 0 0] [r3]
+ [0 0 0 0 1 1 1 1] * [i0]
+ [0 -1 0 1 -1 0 1 0] [i1]
+ [0 -1 0 1 1 0 -1 0] [i2]
+ [0 0 0 0 -1 1 -1 1] [i3]
+ */
+
+ //cerr << "matrix initial, before e , REAL:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
+ //cerr << "matrix initial, before e, IMAG :\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
+
+ VCPLXMUL(r1,i1,e[0],e[1]);
+ VCPLXMUL(r2,i2,e[2],e[3]);
+ VCPLXMUL(r3,i3,e[4],e[5]);
+
+ //cerr << "matrix initial, real part:\n 1: " << r0 << "\n 1: " << r1 << "\n 1: " << r2 << "\n 1: " << r3 << "\n";
+ //cerr << "matrix initial, imag part:\n 1: " << i0 << "\n 1: " << i1 << "\n 1: " << i2 << "\n 1: " << i3 << "\n";
+
+ sr0 = VADD(r0,r2); dr0 = VSUB(r0,r2);
+ sr1 = VADD(r1,r3); dr1 = VSUB(r3,r1);
+ si0 = VADD(i0,i2); di0 = VSUB(i0,i2);
+ si1 = VADD(i1,i3); di1 = VSUB(i3,i1);
+
+ r0 = VADD(sr0, sr1);
+ r3 = VSUB(sr0, sr1);
+ i0 = VADD(si0, si1);
+ i3 = VSUB(si1, si0);
+ r1 = VADD(dr0, di1);
+ r2 = VSUB(dr0, di1);
+ i1 = VSUB(dr1, di0);
+ i2 = VADD(dr1, di0);
+
+ *out++ = r0;
+ *out++ = i0;
+ *out++ = r1;
+ *out++ = i1;
+ *out++ = r2;
+ *out++ = i2;
+ *out++ = r3;
+ *out++ = i3;
+
+}
+
+static NEVER_INLINE(void) pffft_real_finalize(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
+ int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
+ /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
+
+ v4sf_union cr, ci, *uout = (v4sf_union*)out;
+ v4sf save = in[7], zero=VZERO();
+ float xr0, xi0, xr1, xi1, xr2, xi2, xr3, xi3;
+ static const float s = M_SQRT2/2;
+
+ cr.v = in[0]; ci.v = in[Ncvec*2-1];
+ assert(in != out);
+ pffft_real_finalize_4x4(&zero, &zero, in+1, e, out);
+
+ /*
+ [cr0 cr1 cr2 cr3 ci0 ci1 ci2 ci3]
+
+ [Xr(1)] ] [1 1 1 1 0 0 0 0]
+ [Xr(N/4) ] [0 0 0 0 1 s 0 -s]
+ [Xr(N/2) ] [1 0 -1 0 0 0 0 0]
+ [Xr(3N/4)] [0 0 0 0 1 -s 0 s]
+ [Xi(1) ] [1 -1 1 -1 0 0 0 0]
+ [Xi(N/4) ] [0 0 0 0 0 -s -1 -s]
+ [Xi(N/2) ] [0 -1 0 1 0 0 0 0]
+ [Xi(3N/4)] [0 0 0 0 0 -s 1 -s]
+ */
+
+ xr0=(cr.f[0]+cr.f[2]) + (cr.f[1]+cr.f[3]); uout[0].f[0] = xr0;
+ xi0=(cr.f[0]+cr.f[2]) - (cr.f[1]+cr.f[3]); uout[1].f[0] = xi0;
+ xr2=(cr.f[0]-cr.f[2]); uout[4].f[0] = xr2;
+ xi2=(cr.f[3]-cr.f[1]); uout[5].f[0] = xi2;
+ xr1= ci.f[0] + s*(ci.f[1]-ci.f[3]); uout[2].f[0] = xr1;
+ xi1=-ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[3].f[0] = xi1;
+ xr3= ci.f[0] - s*(ci.f[1]-ci.f[3]); uout[6].f[0] = xr3;
+ xi3= ci.f[2] - s*(ci.f[1]+ci.f[3]); uout[7].f[0] = xi3;
+
+ for (k=1; k < dk; ++k) {
+ v4sf save_next = in[8*k+7];
+ pffft_real_finalize_4x4(&save, &in[8*k+0], in + 8*k+1,
+ e + k*6, out + k*8);
+ save = save_next;
+ }
+
+}
+
+static ALWAYS_INLINE(void) pffft_real_preprocess_4x4(const v4sf *in,
+ const v4sf *e, v4sf *out, int first) {
+ v4sf r0=in[0], i0=in[1], r1=in[2], i1=in[3], r2=in[4], i2=in[5], r3=in[6], i3=in[7];
+ /*
+ transformation for each column is:
+
+ [1 1 1 1 0 0 0 0] [r0]
+ [1 0 0 -1 0 -1 -1 0] [r1]
+ [1 -1 -1 1 0 0 0 0] [r2]
+ [1 0 0 -1 0 1 1 0] [r3]
+ [0 0 0 0 1 -1 1 -1] * [i0]
+ [0 -1 1 0 1 0 0 1] [i1]
+ [0 0 0 0 1 1 -1 -1] [i2]
+ [0 1 -1 0 1 0 0 1] [i3]
+ */
+
+ v4sf sr0 = VADD(r0,r3), dr0 = VSUB(r0,r3);
+ v4sf sr1 = VADD(r1,r2), dr1 = VSUB(r1,r2);
+ v4sf si0 = VADD(i0,i3), di0 = VSUB(i0,i3);
+ v4sf si1 = VADD(i1,i2), di1 = VSUB(i1,i2);
+
+ r0 = VADD(sr0, sr1);
+ r2 = VSUB(sr0, sr1);
+ r1 = VSUB(dr0, si1);
+ r3 = VADD(dr0, si1);
+ i0 = VSUB(di0, di1);
+ i2 = VADD(di0, di1);
+ i1 = VSUB(si0, dr1);
+ i3 = VADD(si0, dr1);
+
+ VCPLXMULCONJ(r1,i1,e[0],e[1]);
+ VCPLXMULCONJ(r2,i2,e[2],e[3]);
+ VCPLXMULCONJ(r3,i3,e[4],e[5]);
+
+ VTRANSPOSE4(r0,r1,r2,r3);
+ VTRANSPOSE4(i0,i1,i2,i3);
+
+ if (!first) {
+ *out++ = r0;
+ *out++ = i0;
+ }
+ *out++ = r1;
+ *out++ = i1;
+ *out++ = r2;
+ *out++ = i2;
+ *out++ = r3;
+ *out++ = i3;
+}
+
+static NEVER_INLINE(void) pffft_real_preprocess(int Ncvec, const v4sf *in, v4sf *out, const v4sf *e) {
+ int k, dk = Ncvec/SIMD_SZ; // number of 4x4 matrix blocks
+ /* fftpack order is f0r f1r f1i f2r f2i ... f(n-1)r f(n-1)i f(n)r */
+
+ v4sf_union Xr, Xi, *uout = (v4sf_union*)out;
+ float cr0, ci0, cr1, ci1, cr2, ci2, cr3, ci3;
+ static const float s = M_SQRT2;
+ assert(in != out);
+ for (k=0; k < 4; ++k) {
+ Xr.f[k] = ((float*)in)[8*k];
+ Xi.f[k] = ((float*)in)[8*k+4];
+ }
+
+ pffft_real_preprocess_4x4(in, e, out+1, 1); // will write only 6 values
+
+ /*
+ [Xr0 Xr1 Xr2 Xr3 Xi0 Xi1 Xi2 Xi3]
+
+ [cr0] [1 0 2 0 1 0 0 0]
+ [cr1] [1 0 0 0 -1 0 -2 0]
+ [cr2] [1 0 -2 0 1 0 0 0]
+ [cr3] [1 0 0 0 -1 0 2 0]
+ [ci0] [0 2 0 2 0 0 0 0]
+ [ci1] [0 s 0 -s 0 -s 0 -s]
+ [ci2] [0 0 0 0 0 -2 0 2]
+ [ci3] [0 -s 0 s 0 -s 0 -s]
+ */
+ for (k=1; k < dk; ++k) {
+ pffft_real_preprocess_4x4(in+8*k, e + k*6, out-1+k*8, 0);
+ }
+
+ cr0=(Xr.f[0]+Xi.f[0]) + 2*Xr.f[2]; uout[0].f[0] = cr0;
+ cr1=(Xr.f[0]-Xi.f[0]) - 2*Xi.f[2]; uout[0].f[1] = cr1;
+ cr2=(Xr.f[0]+Xi.f[0]) - 2*Xr.f[2]; uout[0].f[2] = cr2;
+ cr3=(Xr.f[0]-Xi.f[0]) + 2*Xi.f[2]; uout[0].f[3] = cr3;
+ ci0= 2*(Xr.f[1]+Xr.f[3]); uout[2*Ncvec-1].f[0] = ci0;
+ ci1= s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[1] = ci1;
+ ci2= 2*(Xi.f[3]-Xi.f[1]); uout[2*Ncvec-1].f[2] = ci2;
+ ci3=-s*(Xr.f[1]-Xr.f[3]) - s*(Xi.f[1]+Xi.f[3]); uout[2*Ncvec-1].f[3] = ci3;
+}
+
+
+void pffft_transform_internal(PFFFT_Setup *setup, const float *finput, float *foutput, v4sf *scratch,
+ pffft_direction_t direction, int ordered) {
+ int k, Ncvec = setup->Ncvec;
+ int nf_odd = (setup->ifac[1] & 1);
+
+ // temporary buffer is allocated on the stack if the scratch pointer is NULL
+ int stack_allocate = (scratch == 0 ? Ncvec*2 : 1);
+ VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate);
+
+ const v4sf *vinput = (const v4sf*)finput;
+ v4sf *voutput = (v4sf*)foutput;
+ v4sf *buff[2] = { voutput, scratch ? scratch : scratch_on_stack };
+ int ib = (nf_odd ^ ordered ? 1 : 0);
+
+ assert(VALIGNED(finput) && VALIGNED(foutput));
+
+ //assert(finput != foutput);
+ if (direction == PFFFT_FORWARD) {
+ ib = !ib;
+ if (setup->transform == PFFFT_REAL) {
+ ib = (rfftf1_ps(Ncvec*2, vinput, buff[ib], buff[!ib],
+ setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
+ pffft_real_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e);
+ } else {
+ v4sf *tmp = buff[ib];
+ for (k=0; k < Ncvec; ++k) {
+ UNINTERLEAVE2(vinput[k*2], vinput[k*2+1], tmp[k*2], tmp[k*2+1]);
+ }
+ ib = (cfftf1_ps(Ncvec, buff[ib], buff[!ib], buff[ib],
+ setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1);
+ pffft_cplx_finalize(Ncvec, buff[ib], buff[!ib], (v4sf*)setup->e);
+ }
+ if (ordered) {
+ pffft_zreorder(setup, (float*)buff[!ib], (float*)buff[ib], PFFFT_FORWARD);
+ } else ib = !ib;
+ } else {
+ if (vinput == buff[ib]) {
+ ib = !ib; // may happen when finput == foutput
+ }
+ if (ordered) {
+ pffft_zreorder(setup, (float*)vinput, (float*)buff[ib], PFFFT_BACKWARD);
+ vinput = buff[ib]; ib = !ib;
+ }
+ if (setup->transform == PFFFT_REAL) {
+ pffft_real_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e);
+ ib = (rfftb1_ps(Ncvec*2, buff[ib], buff[0], buff[1],
+ setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
+ } else {
+ pffft_cplx_preprocess(Ncvec, vinput, buff[ib], (v4sf*)setup->e);
+ ib = (cfftf1_ps(Ncvec, buff[ib], buff[0], buff[1],
+ setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1);
+ for (k=0; k < Ncvec; ++k) {
+ INTERLEAVE2(buff[ib][k*2], buff[ib][k*2+1], buff[ib][k*2], buff[ib][k*2+1]);
+ }
+ }
+ }
+
+ if (buff[ib] != voutput) {
+ /* extra copy required -- this situation should only happen when finput == foutput */
+ assert(finput==foutput);
+ for (k=0; k < Ncvec; ++k) {
+ v4sf a = buff[ib][2*k], b = buff[ib][2*k+1];
+ voutput[2*k] = a; voutput[2*k+1] = b;
+ }
+ ib = !ib;
+ }
+ assert(buff[ib] == voutput);
+}
+
+void pffft_zconvolve_accumulate(PFFFT_Setup *s, const float *a, const float *b, float *ab, float scaling) {
+ int Ncvec = s->Ncvec;
+ const v4sf * RESTRICT va = (const v4sf*)a;
+ const v4sf * RESTRICT vb = (const v4sf*)b;
+ v4sf * RESTRICT vab = (v4sf*)ab;
+
+#ifdef __arm__
+ __builtin_prefetch(va);
+ __builtin_prefetch(vb);
+ __builtin_prefetch(vab);
+ __builtin_prefetch(va+2);
+ __builtin_prefetch(vb+2);
+ __builtin_prefetch(vab+2);
+ __builtin_prefetch(va+4);
+ __builtin_prefetch(vb+4);
+ __builtin_prefetch(vab+4);
+ __builtin_prefetch(va+6);
+ __builtin_prefetch(vb+6);
+ __builtin_prefetch(vab+6);
+# ifndef __clang__
+# define ZCONVOLVE_USING_INLINE_NEON_ASM
+# endif
+#endif
+
+ float ar, ai, br, bi, abr, abi;
+#ifndef ZCONVOLVE_USING_INLINE_ASM
+ v4sf vscal = LD_PS1(scaling);
+ int i;
+#endif
+
+ assert(VALIGNED(a) && VALIGNED(b) && VALIGNED(ab));
+ ar = ((v4sf_union*)va)[0].f[0];
+ ai = ((v4sf_union*)va)[1].f[0];
+ br = ((v4sf_union*)vb)[0].f[0];
+ bi = ((v4sf_union*)vb)[1].f[0];
+ abr = ((v4sf_union*)vab)[0].f[0];
+ abi = ((v4sf_union*)vab)[1].f[0];
+
+#ifdef ZCONVOLVE_USING_INLINE_ASM // inline asm version, unfortunately miscompiled by clang 3.2, at least on ubuntu.. so this will be restricted to gcc
+ const float *a_ = a, *b_ = b; float *ab_ = ab;
+ int N = Ncvec;
+ asm volatile("mov r8, %2 \n"
+ "vdup.f32 q15, %4 \n"
+ "1: \n"
+ "pld [%0,#64] \n"
+ "pld [%1,#64] \n"
+ "pld [%2,#64] \n"
+ "pld [%0,#96] \n"
+ "pld [%1,#96] \n"
+ "pld [%2,#96] \n"
+ "vld1.f32 {q0,q1}, [%0,:128]! \n"
+ "vld1.f32 {q4,q5}, [%1,:128]! \n"
+ "vld1.f32 {q2,q3}, [%0,:128]! \n"
+ "vld1.f32 {q6,q7}, [%1,:128]! \n"
+ "vld1.f32 {q8,q9}, [r8,:128]! \n"
+
+ "vmul.f32 q10, q0, q4 \n"
+ "vmul.f32 q11, q0, q5 \n"
+ "vmul.f32 q12, q2, q6 \n"
+ "vmul.f32 q13, q2, q7 \n"
+ "vmls.f32 q10, q1, q5 \n"
+ "vmla.f32 q11, q1, q4 \n"
+ "vld1.f32 {q0,q1}, [r8,:128]! \n"
+ "vmls.f32 q12, q3, q7 \n"
+ "vmla.f32 q13, q3, q6 \n"
+ "vmla.f32 q8, q10, q15 \n"
+ "vmla.f32 q9, q11, q15 \n"
+ "vmla.f32 q0, q12, q15 \n"
+ "vmla.f32 q1, q13, q15 \n"
+ "vst1.f32 {q8,q9},[%2,:128]! \n"
+ "vst1.f32 {q0,q1},[%2,:128]! \n"
+ "subs %3, #2 \n"
+ "bne 1b \n"
+ : "+r"(a_), "+r"(b_), "+r"(ab_), "+r"(N) : "r"(scaling) : "r8", "q0","q1","q2","q3","q4","q5","q6","q7","q8","q9", "q10","q11","q12","q13","q15","memory");
+#else // default routine, works fine for non-arm cpus with current compilers
+ for (i=0; i < Ncvec; i += 2) {
+ v4sf ar, ai, br, bi;
+ ar = va[2*i+0]; ai = va[2*i+1];
+ br = vb[2*i+0]; bi = vb[2*i+1];
+ VCPLXMUL(ar, ai, br, bi);
+ vab[2*i+0] = VMADD(ar, vscal, vab[2*i+0]);
+ vab[2*i+1] = VMADD(ai, vscal, vab[2*i+1]);
+ ar = va[2*i+2]; ai = va[2*i+3];
+ br = vb[2*i+2]; bi = vb[2*i+3];
+ VCPLXMUL(ar, ai, br, bi);
+ vab[2*i+2] = VMADD(ar, vscal, vab[2*i+2]);
+ vab[2*i+3] = VMADD(ai, vscal, vab[2*i+3]);
+ }
+#endif
+ if (s->transform == PFFFT_REAL) {
+ ((v4sf_union*)vab)[0].f[0] = abr + ar*br*scaling;
+ ((v4sf_union*)vab)[1].f[0] = abi + ai*bi*scaling;
+ }
+}
+
+
+#else // defined(PFFFT_SIMD_DISABLE)
+
+// standard routine using scalar floats, without SIMD stuff.
+
+#define pffft_zreorder_nosimd pffft_zreorder
+void pffft_zreorder_nosimd(PFFFT_Setup *setup, const float *in, float *out, pffft_direction_t direction) {
+ int k, N = setup->N;
+ if (setup->transform == PFFFT_COMPLEX) {
+ for (k=0; k < 2*N; ++k) out[k] = in[k];
+ return;
+ }
+ else if (direction == PFFFT_FORWARD) {
+ float x_N = in[N-1];
+ for (k=N-1; k > 1; --k) out[k] = in[k-1];
+ out[0] = in[0];
+ out[1] = x_N;
+ } else {
+ float x_N = in[1];
+ for (k=1; k < N-1; ++k) out[k] = in[k+1];
+ out[0] = in[0];
+ out[N-1] = x_N;
+ }
+}
+
+#define pffft_transform_internal_nosimd pffft_transform_internal
+void pffft_transform_internal_nosimd(PFFFT_Setup *setup, const float *input, float *output, float *scratch,
+ pffft_direction_t direction, int ordered) {
+ int Ncvec = setup->Ncvec;
+ int nf_odd = (setup->ifac[1] & 1);
+
+ // temporary buffer is allocated on the stack if the scratch pointer is NULL
+ int stack_allocate = (scratch == 0 ? Ncvec*2 : 1);
+ VLA_ARRAY_ON_STACK(v4sf, scratch_on_stack, stack_allocate);
+ float *buff[2];
+ int ib;
+ if (scratch == 0) scratch = scratch_on_stack;
+ buff[0] = output; buff[1] = scratch;
+
+ if (setup->transform == PFFFT_COMPLEX) ordered = 0; // it is always ordered.
+ ib = (nf_odd ^ ordered ? 1 : 0);
+
+ if (direction == PFFFT_FORWARD) {
+ if (setup->transform == PFFFT_REAL) {
+ ib = (rfftf1_ps(Ncvec*2, input, buff[ib], buff[!ib],
+ setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
+ } else {
+ ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib],
+ setup->twiddle, &setup->ifac[0], -1) == buff[0] ? 0 : 1);
+ }
+ if (ordered) {
+ pffft_zreorder(setup, buff[ib], buff[!ib], PFFFT_FORWARD); ib = !ib;
+ }
+ } else {
+ if (input == buff[ib]) {
+ ib = !ib; // may happen when finput == foutput
+ }
+ if (ordered) {
+ pffft_zreorder(setup, input, buff[!ib], PFFFT_BACKWARD);
+ input = buff[!ib];
+ }
+ if (setup->transform == PFFFT_REAL) {
+ ib = (rfftb1_ps(Ncvec*2, input, buff[ib], buff[!ib],
+ setup->twiddle, &setup->ifac[0]) == buff[0] ? 0 : 1);
+ } else {
+ ib = (cfftf1_ps(Ncvec, input, buff[ib], buff[!ib],
+ setup->twiddle, &setup->ifac[0], +1) == buff[0] ? 0 : 1);
+ }
+ }
+ if (buff[ib] != output) {
+ int k;
+ // extra copy required -- this situation should happens only when finput == foutput
+ assert(input==output);
+ for (k=0; k < Ncvec; ++k) {
+ float a = buff[ib][2*k], b = buff[ib][2*k+1];
+ output[2*k] = a; output[2*k+1] = b;
+ }
+ ib = !ib;
+ }
+ assert(buff[ib] == output);
+}
+
+#define pffft_zconvolve_accumulate_nosimd pffft_zconvolve_accumulate
+void pffft_zconvolve_accumulate_nosimd(PFFFT_Setup *s, const float *a, const float *b,
+ float *ab, float scaling) {
+ int i, Ncvec = s->Ncvec;
+
+ if (s->transform == PFFFT_REAL) {
+ // take care of the fftpack ordering
+ ab[0] += a[0]*b[0]*scaling;
+ ab[2*Ncvec-1] += a[2*Ncvec-1]*b[2*Ncvec-1]*scaling;
+ ++ab; ++a; ++b; --Ncvec;
+ }
+ for (i=0; i < Ncvec; ++i) {
+ float ar, ai, br, bi;
+ ar = a[2*i+0]; ai = a[2*i+1];
+ br = b[2*i+0]; bi = b[2*i+1];
+ VCPLXMUL(ar, ai, br, bi);
+ ab[2*i+0] += ar*scaling;
+ ab[2*i+1] += ai*scaling;
+ }
+}
+
+#endif // defined(PFFFT_SIMD_DISABLE)
+
+void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) {
+ pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 0);
+}
+
+void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction) {
+ pffft_transform_internal(setup, input, output, (v4sf*)work, direction, 1);
+}
diff --git a/lib/src/fft/pffft/pffft.h b/lib/src/fft/pffft/pffft.h
new file mode 100644
index 0000000..5db3d11
--- /dev/null
+++ b/lib/src/fft/pffft/pffft.h
@@ -0,0 +1,177 @@
+/* Copyright (c) 2013 Julien Pommier ( pommier@modartt.com )
+
+ Based on original fortran 77 code from FFTPACKv4 from NETLIB,
+ authored by Dr Paul Swarztrauber of NCAR, in 1985.
+
+ As confirmed by the NCAR fftpack software curators, the following
+ FFTPACKv5 license applies to FFTPACKv4 sources. My changes are
+ released under the same terms.
+
+ FFTPACK license:
+
+ http://www.cisl.ucar.edu/css/software/fftpack5/ftpk.html
+
+ Copyright (c) 2004 the University Corporation for Atmospheric
+ Research ("UCAR"). All rights reserved. Developed by NCAR's
+ Computational and Information Systems Laboratory, UCAR,
+ www.cisl.ucar.edu.
+
+ Redistribution and use of the Software in source and binary forms,
+ with or without modification, is permitted provided that the
+ following conditions are met:
+
+ - Neither the names of NCAR's Computational and Information Systems
+ Laboratory, the University Corporation for Atmospheric Research,
+ nor the names of its sponsors or contributors may be used to
+ endorse or promote products derived from this Software without
+ specific prior written permission.
+
+ - Redistributions of source code must retain the above copyright
+ notices, this list of conditions, and the disclaimer below.
+
+ - Redistributions in binary form must reproduce the above copyright
+ notice, this list of conditions, and the disclaimer below in the
+ documentation and/or other materials provided with the
+ distribution.
+
+ THIS SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO THE WARRANTIES OF
+ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
+ HOLDERS BE LIABLE FOR ANY CLAIM, INDIRECT, INCIDENTAL, SPECIAL,
+ EXEMPLARY, OR CONSEQUENTIAL DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
+ SOFTWARE.
+*/
+
+/*
+ PFFFT : a Pretty Fast FFT.
+
+ This is basically an adaptation of the single precision fftpack
+ (v4) as found on netlib taking advantage of SIMD instruction found
+ on cpus such as intel x86 (SSE1), powerpc (Altivec), and arm (NEON).
+
+ For architectures where no SIMD instruction is available, the code
+ falls back to a scalar version.
+
+ Restrictions:
+
+ - 1D transforms only, with 32-bit single precision.
+
+ - supports only transforms for inputs of length N of the form
+ N=(2^a)*(3^b)*(5^c), a >= 5, b >=0, c >= 0 (32, 48, 64, 96, 128,
+ 144, 160, etc are all acceptable lengths). Performance is best for
+ 128<=N<=8192.
+
+ - all (float*) pointers in the functions below are expected to
+ have an "simd-compatible" alignment, that is 16 bytes on x86 and
+ powerpc CPUs.
+
+ You can allocate such buffers with the functions
+ pffft_aligned_malloc / pffft_aligned_free (or with stuff like
+ posix_memalign..)
+
+*/
+
+#ifndef PFFFT_H
+#define PFFFT_H
+
+#include <stddef.h> // for size_t
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+ /* opaque struct holding internal stuff (precomputed twiddle factors)
+ this struct can be shared by many threads as it contains only
+ read-only data.
+ */
+ typedef struct PFFFT_Setup PFFFT_Setup;
+
+ /* direction of the transform */
+ typedef enum { PFFFT_FORWARD, PFFFT_BACKWARD } pffft_direction_t;
+
+ /* type of transform */
+ typedef enum { PFFFT_REAL, PFFFT_COMPLEX } pffft_transform_t;
+
+ /*
+ prepare for performing transforms of size N -- the returned
+ PFFFT_Setup structure is read-only so it can safely be shared by
+ multiple concurrent threads.
+ */
+ PFFFT_Setup *pffft_new_setup(int N, pffft_transform_t transform);
+ void pffft_destroy_setup(PFFFT_Setup *);
+ /*
+ Perform a Fourier transform , The z-domain data is stored in the
+ most efficient order for transforming it back, or using it for
+ convolution. If you need to have its content sorted in the
+ "usual" way, that is as an array of interleaved complex numbers,
+ either use pffft_transform_ordered , or call pffft_zreorder after
+ the forward fft, and before the backward fft.
+
+ Transforms are not scaled: PFFFT_BACKWARD(PFFFT_FORWARD(x)) = N*x.
+ Typically you will want to scale the backward transform by 1/N.
+
+ The 'work' pointer should point to an area of N (2*N for complex
+ fft) floats, properly aligned. If 'work' is NULL, then stack will
+ be used instead (this is probably the best strategy for small
+ FFTs, say for N < 16384).
+
+ input and output may alias.
+ */
+ void pffft_transform(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction);
+
+ /*
+ Similar to pffft_transform, but makes sure that the output is
+ ordered as expected (interleaved complex numbers). This is
+ similar to calling pffft_transform and then pffft_zreorder.
+
+ input and output may alias.
+ */
+ void pffft_transform_ordered(PFFFT_Setup *setup, const float *input, float *output, float *work, pffft_direction_t direction);
+
+ /*
+ call pffft_zreorder(.., PFFFT_FORWARD) after pffft_transform(...,
+ PFFFT_FORWARD) if you want to have the frequency components in
+ the correct "canonical" order, as interleaved complex numbers.
+
+ (for real transforms, both 0-frequency and half frequency
+ components, which are real, are assembled in the first entry as
+ F(0)+i*F(n/2+1). Note that the original fftpack did place
+ F(n/2+1) at the end of the arrays).
+
+ input and output should not alias.
+ */
+ void pffft_zreorder(PFFFT_Setup *setup, const float *input, float *output, pffft_direction_t direction);
+
+ /*
+ Perform a multiplication of the frequency components of dft_a and
+ dft_b and accumulate them into dft_ab. The arrays should have
+ been obtained with pffft_transform(.., PFFFT_FORWARD) and should
+ *not* have been reordered with pffft_zreorder (otherwise just
+ perform the operation yourself as the dft coefs are stored as
+ interleaved complex numbers).
+
+ the operation performed is: dft_ab += (dft_a * fdt_b)*scaling
+
+ The dft_a, dft_b and dft_ab pointers may alias.
+ */
+ void pffft_zconvolve_accumulate(PFFFT_Setup *setup, const float *dft_a, const float *dft_b, float *dft_ab, float scaling);
+
+ /*
+ the float buffers must have the correct alignment (16-byte boundary
+ on intel and powerpc). This function may be used to obtain such
+ correctly aligned buffers.
+ */
+ void *pffft_aligned_malloc(size_t nb_bytes);
+ void pffft_aligned_free(void *);
+
+ /* return 4 or 1 wether support SSE/Altivec instructions was enable when building pffft.c */
+ int pffft_simd_size(void);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif // PFFFT_H