aboutsummaryrefslogtreecommitdiffstats
path: root/tools/python/convert_from_tensorflow.py
blob: 34454b86def6e1db4e98da36669f3fb8b5265165 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
# Copyright (c) 2019 Guo Yejun
#
# This file is part of FFmpeg.
#
# FFmpeg is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License, or (at your option) any later version.
#
# FFmpeg is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with FFmpeg; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
# ==============================================================================

import tensorflow as tf
import numpy as np
import sys, struct

__all__ = ['convert_from_tensorflow']

class TFConverter:
    def __init__(self, graph_def, nodes, outfile, dump4tb):
        self.graph_def = graph_def
        self.nodes = nodes
        self.outfile = outfile
        self.dump4tb = dump4tb
        self.layer_number = 0
        self.output_names = []
        self.name_node_dict = {}
        self.edges = {}
        self.conv_activations = {'Relu':0, 'Tanh':1, 'Sigmoid':2, 'None':3, 'LeakyRelu':4}
        self.conv_paddings = {'VALID':0, 'SAME':1}
        self.converted_nodes = set()
        self.conv2d_scope_names = set()
        self.op2code = {'Conv2D':1, 'DepthToSpace':2, 'MirrorPad':3}
        self.mirrorpad_mode = {'CONSTANT':0, 'REFLECT':1, 'SYMMETRIC':2}


    def dump_for_tensorboard(self):
        graph = tf.get_default_graph()
        tf.import_graph_def(self.graph_def, name="")
        tf.summary.FileWriter('/tmp/graph', graph)
        print('graph saved, run "tensorboard --logdir=/tmp/graph" to see it')


    def get_conv2d_params(self, conv2d_scope_name):
        knode = self.name_node_dict[conv2d_scope_name + '/kernel']
        bnode = self.name_node_dict[conv2d_scope_name + '/bias']

        if conv2d_scope_name + '/dilation_rate' in self.name_node_dict:
            dnode = self.name_node_dict[conv2d_scope_name + '/dilation_rate']
        else:
            dnode = None

        # the BiasAdd name is possible be changed into the output name,
        # if activation is None, and BiasAdd.next is the last op which is Identity
        if conv2d_scope_name + '/BiasAdd' in self.edges:
            activation = self.edges[conv2d_scope_name + '/BiasAdd'][0]
            activation = activation.op
        else:
            activation = 'None'
        return knode, bnode, dnode, activation


    def dump_conv2d_to_file(self, node, f):
        assert(node.op == 'Conv2D')
        self.layer_number = self.layer_number + 1
        self.converted_nodes.add(node.name)

        scope_name = TFConverter.get_scope_name(node.name)
        #knode for kernel, bnode for bias, dnode for dilation
        knode, bnode, dnode, activation = self.get_conv2d_params(scope_name)

        if dnode is not None:
            dilation = struct.unpack('i', dnode.attr['value'].tensor.tensor_content[0:4])[0]
        else:
            dilation = 1

        padding = node.attr['padding'].s.decode("utf-8")
        # conv2d with dilation > 1 generates tens of nodes, not easy to parse them, so use tricky.
        if dilation > 1 and scope_name + '/stack' in self.name_node_dict:
            if self.name_node_dict[scope_name + '/stack'].op == "Const":
                padding = 'SAME'
        padding = self.conv_paddings[padding]

        ktensor = knode.attr['value'].tensor
        filter_height = ktensor.tensor_shape.dim[0].size
        filter_width = ktensor.tensor_shape.dim[1].size
        in_channels = ktensor.tensor_shape.dim[2].size
        out_channels = ktensor.tensor_shape.dim[3].size
        kernel = np.frombuffer(ktensor.tensor_content, dtype=np.float32)
        kernel = kernel.reshape(filter_height, filter_width, in_channels, out_channels)
        kernel = np.transpose(kernel, [3, 0, 1, 2])

        np.array([self.op2code[node.op], dilation, padding, self.conv_activations[activation], in_channels, out_channels, filter_height], dtype=np.uint32).tofile(f)
        kernel.tofile(f)

        btensor = bnode.attr['value'].tensor
        if btensor.tensor_shape.dim[0].size == 1:
            bias = struct.pack("f", btensor.float_val[0])
        else:
            bias = btensor.tensor_content
        f.write(bias)


    def dump_depth2space_to_file(self, node, f):
        assert(node.op == 'DepthToSpace')
        self.layer_number = self.layer_number + 1
        block_size = node.attr['block_size'].i
        np.array([self.op2code[node.op], block_size], dtype=np.uint32).tofile(f)
        self.converted_nodes.add(node.name)


    def dump_mirrorpad_to_file(self, node, f):
        assert(node.op == 'MirrorPad')
        self.layer_number = self.layer_number + 1
        mode = node.attr['mode'].s
        mode = self.mirrorpad_mode[mode.decode("utf-8")]
        np.array([self.op2code[node.op], mode], dtype=np.uint32).tofile(f)
        pnode = self.name_node_dict[node.input[1]]
        self.converted_nodes.add(pnode.name)
        paddings = pnode.attr['value'].tensor.tensor_content
        f.write(paddings)
        self.converted_nodes.add(node.name)


    def generate_layer_number(self):
        # in current hard code implementation, the layer number is the first data written to the native model file
        # it is not easy to know it at the beginning time in the general converter, so first do a dry run for compatibility
        # will be refined later.
        with open('/tmp/tmp.model', 'wb') as f:
            self.dump_layers_to_file(f)
        self.converted_nodes.clear()


    def dump_layers_to_file(self, f):
        for node in self.nodes:
            if node.name in self.converted_nodes:
                continue

            # conv2d with dilation generates very complex nodes, so handle it in special
            scope_name = TFConverter.get_scope_name(node.name)
            if scope_name in self.conv2d_scope_names:
                if node.op == 'Conv2D':
                    self.dump_conv2d_to_file(node, f)
                continue

            if node.op == 'DepthToSpace':
                self.dump_depth2space_to_file(node, f)
            elif node.op == 'MirrorPad':
                self.dump_mirrorpad_to_file(node, f)


    def dump_to_file(self):
        self.generate_layer_number()
        with open(self.outfile, 'wb') as f:
            np.array([self.layer_number], dtype=np.uint32).tofile(f)
            self.dump_layers_to_file(f)


    def generate_name_node_dict(self):
        for node in self.nodes:
            self.name_node_dict[node.name] = node


    def generate_output_names(self):
        used_names = []
        for node in self.nodes:
            for input in node.input:
                used_names.append(input)

        for node in self.nodes:
            if node.name not in used_names:
                self.output_names.append(node.name)


    def remove_identity(self):
        id_nodes = []
        id_dict = {}
        for node in self.nodes:
            if node.op == 'Identity':
                name = node.name
                input = node.input[0]
                id_nodes.append(node)
                # do not change the output name
                if name in self.output_names:
                    self.name_node_dict[input].name = name
                    self.name_node_dict[name] = self.name_node_dict[input]
                    del self.name_node_dict[input]
                else:
                    id_dict[name] = input

        for idnode in id_nodes:
            self.nodes.remove(idnode)

        for node in self.nodes:
            for i in range(len(node.input)):
                input = node.input[i]
                if input in id_dict:
                    node.input[i] = id_dict[input]


    def generate_edges(self):
        for node in self.nodes:
            for input in node.input:
                if input in self.edges:
                    self.edges[input].append(node)
                else:
                    self.edges[input] = [node]


    @staticmethod
    def get_scope_name(name):
        index = name.rfind('/')
        if index == -1:
            return ""
        return name[0:index]


    def generate_conv2d_scope_names(self):
        for node in self.nodes:
            if node.op == 'Conv2D':
                scope = TFConverter.get_scope_name(node.name)
                self.conv2d_scope_names.add(scope)


    def run(self):
        self.generate_name_node_dict()
        self.generate_output_names()
        self.remove_identity()
        self.generate_edges()
        self.generate_conv2d_scope_names()

        if self.dump4tb:
            self.dump_for_tensorboard()

        self.dump_to_file()


def convert_from_tensorflow(infile, outfile, dump4tb):
    with open(infile, 'rb') as f:
        # read the file in .proto format
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        nodes = graph_def.node

    converter = TFConverter(graph_def, nodes, outfile, dump4tb)
    converter.run()